
ST
A

TI
ST

IC
S

G
EN

ET
IC

S

The harmonic mean p-value for combining
dependent tests
Daniel J. Wilsona,1

aBig Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3
7LF, United Kingdom

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved December 4, 2018 (received for review August 20, 2018)

Analysis of “big data” frequently involves statistical comparison
of millions of competing hypotheses to discover hidden processes
underlying observed patterns of data, for example, in the search
for genetic determinants of disease in genome-wide association
studies (GWAS). Controlling the familywise error rate (FWER) is
considered the strongest protection against false positives but
makes it difficult to reach the multiple testing-corrected signif-
icance threshold. Here, I introduce the harmonic mean p-value
(HMP), which controls the FWER while greatly improving statisti-
cal power by combining dependent tests using generalized central
limit theorem. I show that the HMP effortlessly combines infor-
mation to detect statistically significant signals among groups of
individually nonsignificant hypotheses in examples of a human
GWAS for neuroticism and a joint human–pathogen GWAS for
hepatitis C viral load. The HMP simultaneously tests all ways to
group hypotheses, allowing the smallest groups of hypotheses
that retain significance to be sought. The power of the HMP to
detect significant hypothesis groups is greater than the power of
the Benjamini–Hochberg procedure to detect significant hypothe-
ses, although the latter only controls the weaker false discovery
rate (FDR). The HMP has broad implications for the analysis of
large datasets, because it enhances the potential for scientific
discovery.
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Analysis of big data has great potential, for instance by
transforming our understanding of how genetics influences

human disease (1), but it presents unique challenges. One
such challenge faces geneticists designing genome-wide associ-
ation studies (GWAS). Individuals have typically been typed at
around 600,000 variants spread across the 3.2 billion base-pair
genome. With the rapidly decreasing costs of DNA sequenc-
ing, whole-genome sequencing is becoming routine, raising
the possibility of detecting associations at ever more variants
(2, 3). However, increasing the number of tests of association
conventionally requires more stringent p-value correction for
multiple testing, reducing the probability of detecting any indi-
vidual association. The idea that analyzing more data may lead to
fewer discoveries is counterintuitive and suggests a flaw of logic.

The problem of testing many hypotheses while controlling the
appropriate false positive rate is a long-standing issue. The fam-
ilywise error rate (FWER) is the probability of falsely rejecting
a null in favor of an alternative hypothesis in one or more of all
tests performed. Controlling the FWER in the presence of some
true positives is challenging and considered the strongest form of
protection against false positives (4). Unfortunately, the simple
and widely used Bonferroni method for controlling the FWER
is conservative, especially when the individual tests are positively
correlated (5).

Model selection is an important setting affected by correlated
tests, in which the same data are used to evaluate many com-
peting alternative hypotheses. Reanalysis of the same outcomes
across tests in GWAS causes dependence because of correlations
between regressors in different models (6). Other phenomena,
such as unmeasured confounders, can induce dependence, even

when alternative hypotheses are not mutually exclusive, such
as in gene expression analyses (7). The conservative nature of
Bonferroni correction, particularly when tests are correlated,
exacerbates the stringent criterion of controlling the FWER,
jeopardizing sensitivity to detect true signals.

Simulations may be used to identify thresholds that are
less stringent yet control the FWER. However, simulating can
be time consuming; model-based simulations require knowl-
edge of the dependency structure, which may be limited; and
permutation-based procedures are not always appropriate (8).

The false discovery rate (FDR) offers an alternative to the
FWER. Controlling the FDR guarantees that, among the sig-
nificant tests, the proportion in which the null hypothesis is
incorrectly rejected in favor of the alternative is limited (9). The
widely used Benjamini–Hochberg (BH) procedure (9) for con-
trolling the FDR shares with the Bonferroni method a robustness
to positive correlation between tests (10) but is less conserva-
tive. These advantages have made FDR a popular alternative to
FWER, in practice trading off larger numbers of false positives
for more statistical power.

Combined tests offer a different way to improve power. By
aggregating multiple hypothesis tests, combined tests are sen-
sitive to signals that may be individually too subtle to detect,
especially after multiple testing correction. Their conclu-
sions, therefore, apply collectively rather than to individual tests.
Fisher’s method (11) is perhaps the best known and has been
widely used in gene set enrichment analysis, but it makes the
strong assumption that tests are independent.

Bayesian model averaging offers a way to combine alternative
hypotheses in the model selection setting. By comparing groups

Significance

The widespread use of Bonferroni correction encumbers the
scientific process and wastes opportunities for discovery pre-
sented by big data, because it discourages exploratory anal-
yses by overpenalizing the total number of statistical tests
performed. In this paper, I introduce the harmonic mean p-
value (HMP), a simple to use and widely applicable alternative
to Bonferroni correction motivated by Bayesian model averag-
ing that greatly improves statistical power while maintaining
control of the gold standard false positive rate. The HMP has
a range of desirable properties and offers a different way to
think about large-scale exploratory data analysis in classical
statistics.
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of alternative hypotheses against a common null, the null hypoth-
esis may be ruled out collectively. In the case of GWAS, even
if no individual variant shows sufficient evidence of association
in a region, the model-averaged signal across that region may
yet achieve sufficiently strong posterior odds (12, 13). Combin-
ing tests in this way makes an asset of more data by creating
the potential for more fine-grained discovery when the signal is
strong enough without the liability of requiring that all hypothe-
ses are evaluated individually at the higher level of statistical
stringency.

In this paper, I use Bayesian model averaging to develop
a method, the harmonic mean p-value (HMP), for combining
dependent p-values while controlling the strong-sense FWER.
The method is derived in the model selection setting and is best
interpreted as offering a complementary method to Fisher’s that
combines tests by model averaging when they are mutually exclu-
sive, not independent. However, the HMP is applicable beyond
model selection problems, because it assumes only that the p-
values are valid. It enjoys several remarkable properties that
offer benefits across a wide range of big data problems.

Methods
Model-Averaged Mean Maximum Likelihood. The original idea
motivating this paper was to develop a classical analogue to the
model-averaged Bayes factor by deriving the null distribution for
the mean maximized likelihood ratio,

R̄ =

L∑
i=1

wi Ri , [1]

with maximized likelihood ratios R1 . . .RL and weights w1 . . .

wL, where
∑L

i=1 wi = 1.
The maximized likelihood ratio is a classical analogue of

the Bayes factor and measures the evidence for the alternative
hypothesisMi against the nullM0 given the data X:

Ri =
sup{Pr(X|θ) : θ∈ΘMi }
sup{Pr(X|θ) : θ∈ΘM0}

.

In a likelihood ratio test, the p-value is calculated as the proba-
bility of obtaining an Ri as or more extreme if the null hypothesis
were true:

pi = Pr(ri ≥Ri | θ∈ΘM0).

For nested hypotheses (ΘM0 ∈ΘMi ), Wilks’ theorem (14)
approximates the null distribution of Ri as LogGamma(α=
ν/2,β= 1) when there are ν degrees of freedom.

The distribution of R̄ cannot be approximated by central
limit theorem, because the LogGamma distribution is heavy
tailed, with undefined variance when β≤ 2. Instead, general-
ized central limit theorem can be used (15), which states that,
for equal weights (wi = 1/L) and independent and identically
distributed Ris,

R1 + · · ·+RL
d−→ aL + bL Rλ, [2]

where aL and bL are constants and Rλ is a Stable distribution
with tail index λ=β= 1. The specific Stable distribution is a type
of Landau distribution (16) with parameters that depend on L
and ν (SI Appendix, section 1). Theory, supported by detailed
simulations in SI Appendix, section 2, shows that (i) the assump-
tions of equal weights, independence, and identical degrees of
freedom can be relaxed and that (ii) the Landau distribution
approximation performs best when ν= 2.

The Harmonic Mean p -Value. Notably, when ν= 2 and the assump-
tions of Wilks’ theorem are met, the p-value equals the inverse
maximized likelihood ratio:

pi = Pr (ri ≥Ri |θ∈ΘM0)

= Pr
(
χ2
ν=2≥ 2 log Ri

)
=R−1

i ,

and therefore, the mean maximized likelihood ratio equals the
inverse HMP:

R̄ = 1/
◦
p. [3]

Under these conditions, interpreting R̄ and the HMP is exactly
equivalent. This equivalence motivates use of the HMP more
generally because of the following.

i) The Landau distribution gives an excellent approximation for
R̄ with ν= 2, and hence for 1/

◦
p.

ii) Wilks’ theorem can be replaced with the simpler assumption
that the p-values are well calibrated.

iii) The HMP will capture similar information to R̄ for any
degrees of freedom.

iv) Combining pis rather than Ris automatically accounts for
differences in degrees of freedom.

A combined p-value, which becomes exact as the number of
p-values L increases, can be calculated as

p◦
p

=

∫ ∞
1/
◦
p

fLandau

(
x | log L+ 0.874,

π

2

)
dx , [4]

with the Landau distribution probability density function

fLandau(x |µ,σ) =
1

πσ

∫ ∞
0

e−t
(x−µ)

σ
− 2

π
t log t sin(2t) dt .

Remarkably, however, the HMP can be directly interpreted,
because it is approximately well calibrated when small. Using the
theory of regularly varying functions (see ref. 17),

p◦
p

= Pr

(
L∑

i=1

wi p
−1
i ≥ 1/

◦
p

)

≈

(
L∑

i=1

wλi

)
Pr
(
p−1
i ≥ 1/

◦
p
)

,
◦
p→ 0

=
◦
p. [5]

This property suggests the following test, which controls the
strong-sense FWER at level approximately α≤ 0.05 for an HMP
◦
pR calculated on a subset of p-values {pi : i ∈R}:

If
◦
pR≤αwR : RejectM0 in favor ofMR

Otherwise : Do not rejectM0 forMR
, [6]

where wR=
∑

i∈R wi . Directly interpreting the HMP using Eq.
6 constitutes a multilevel test in the sense that any significant
subset of hypotheses implies that the HMP of the whole set is
also significant, because

If
◦
pR≤αwR

Then
◦
p =

(
wR

◦
p
−1

R +wR′
◦
p
−1

R′

)
−1

≤w−1
R
◦
pR≤α. [7]

Conversely, if the “headline” HMP
◦
p is not significant, nor is the

HMP for any subset
◦
pR. The significance thresholds apply no

matter how many subsetsR are combined and tested.
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Table 1. Significance thresholds α|R| for
◦
pRw−1

R , the adjusted
HMP, for varying numbers of alternative hypotheses |R| and
false positive rates α

|R| α= 0.05 α= 0.01 α= 0.001

10 0.040 0.0094 0.00099
100 0.036 0.0092 0.00099
1,000 0.034 0.0090 0.00099
10,000 0.031 0.0088 0.00098
100,000 0.029 0.0086 0.00098
1,000,000 0.027 0.0084 0.00098
10,000,000 0.026 0.0083 0.00098
100,000,000 0.024 0.0081 0.00098
1,000,000,000 0.023 0.0080 0.00097

The above properties show that directly interpreting the HMP
(i) is a closed testing procedure (4) that controls the strong-
sense FWER (SI Appendix, section 3); (ii) is more powerful than
Bonferroni and Simes correction, because the HMP is always
smaller than the p-values for those tests (SI Appendix, section
4); and therefore, (iii) produces significant results whenever the
Simes-based BH procedure does, although BH only controls the
less stringent FDR.

While direct interpretation of the HMP controls the strong-
sense FWER, the level at which it does so is only approximately
α, and is in fact anticonservative, but only very slightly for small
α and small |R|. Assessing the adjusted HMP,

◦
pRw

−1
R , against

level α|R| calculated by inverting Eq. 4 permits a test that is
exact up to the order of the Landau distribution approximation
(Table 1). (Equivalently, one can compare the exact p-value from
Eq. 4 with αwR.) Simulations suggest that this exact test remains
more powerful than Bonferroni, Simes, and therefore, BH (SI
Appendix, section 4).

I recommend the use of this asymptotically exact test, avail-
able in the R package “harmonicmeanp” (https://CRAN.R-
project.org/package=harmonicmeanp), on which all subsequent
analyses in Results are based. Analyses based on direct interpre-
tation of the HMP are also presented and reveal the practical
differences between the approaches to be small for α= 0.05.

Choice of Weights. I anticipate that the HMP will usually be used
with equal weights, as are procedures such as Bonferroni cor-
rection and Simes’ test. SI Appendix, section 5 considers optimal
weights. Based on Bayesian (18) and classical arguments and
assuming that all tests have good power, the optimal weight wi

is found to be proportional to the product of the prior prob-
ability of alternative hypothesis Mi and the expectation of pi
underMi . This optimal weighting would favor alternatives that
are more probable a priori while penalizing those associated with
more powerful tests.

Consequently, the use of equal weights can be interpreted as
assuming that all alternative hypotheses are equally likely a priori
and that all tests are equally powerful. If tests are not equally
powerful for a given “effect size,” the equal power assumption
implies that alternatives associated with inherently less powerful
tests are expected to have larger effect sizes a priori, a testable
assumption that has been used often in GWAS (19).

Results
The main result of this paper is that the weighted harmonic mean
p-value of any subsetR of the p-values p1 . . . pL,

◦
pR=

∑
i∈R wi∑

i∈R wi/pi
, [8]

(i) combines the evidence in favor of the group of alternative
hypothesesR, (ii) is an approximately well-calibrated p-value for
small values, and (iii) controls the strong-sense FWER at level
approximately α≤ 0.05 when compared against the threshold
αwR, no matter how many other subsets of the same p-values
are tested (wR=

∑
i∈R wi and

∑L
i=1 wi = 1). An asymptotically

exact test is also available (Eq. 4). The HMP has several help-
ful properties that arise from generalized central limit theorem.
It is:

i) Robust to positive dependency between p-values.
ii) Insensitive to the exact number of tests.

iii) Robust to the distribution of weights w .
iv) Most influenced by the smallest p-values.

The HMP outperforms Bonferroni and Simes (5) correction.
This advantage over Simes’ test means that whenever the BH
procedure (9), which controls only the FDR, finds significant
hypotheses, the HMP will find significant hypotheses or groups
of hypotheses. The HMP complements Fisher’s method for com-
bining independent p-values (11), because the HMP is more
appropriate when (i) rejecting the null implies that only one
alternative hypothesis may be true and not all of them or (ii) the
p-values might be positively correlated and cannot be assumed to
be independent.

HMP Enables Adaptive Multiple Testing Correction by Combining p -
Values. That the Bonferroni method for controlling the FWER
can be overly stringent, especially when the tests are noninde-
pendent, has long been recognized. In Bonferroni correction, a
p-value is deemed significant if p≤α/L, which becomes more
stringent as the number of tests L increases. Since human GWAS
began routinely testing millions of variants by statistically imput-
ing untyped variants, a new convention was adopted in which a
p-value is deemed significant if p≤ 5× 10−8, a rule that implies
that the effective number of tests is no more than L= 106. Sev-
eral lines of argument were used to justify this threshold (20–22),
most applicable specifically to human GWAS.

In contrast, the HMP affords strong control of the FWER
while avoiding both simulation studies and the undue strin-
gency of Bonferroni correction, an advantage that increases
when tests are nonindependent. To show how the HMP can
recover significant associations among groups of tests that are
individually nonsignificant, I reanalyzed a GWAS of neuroticism
(23), defined as a tendency toward intense or frequent negative
emotions and thoughts (24). Genotypes were imputed for L=
6 524 432 variants across 170 911 individuals. I used the HMP to
perform model-averaged tests of association between neuroti-
cism and variants within contiguous regions of 10 kb, 100 kb,
1,000 kb, 10 Mb, entire chromosomes, and the whole genome,
assuming equal weights across variants (SI Appendix, section 6).

Fig. 1 shows the p-value from Eq. 4 for each regionR adjusted
by a factor w−1

R to enable direct comparison with the signif-
icance threshold α= 0.05. Similar results were obtained from
direct interpretation of the HMP (SI Appendix, Fig. S1). Model
averaging tends to make significant and near-significant adjusted
p-values more significant. For example, for every variant signif-
icant after Bonferroni correction, the model-averaged p-value
for the corresponding chromosome was found to be at least as
significant.

Model averaging increases significance more when combin-
ing a group of comparably significant p-values, e.g., the top hits
in chromosome 9. The least improvement is seen when one p-
value is much more significant than the others, e.g., the top hit
in chromosome 3. This behavior is predicted by the tendency
of harmonic means to be dominated by the smallest values. In
the extreme case that one p-value dominates the significance of
all others, the HMP test becomes equivalent to Bonferroni cor-
rection. This implies that Bonferroni correction might not be
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Fig. 1. Results of a GWAS of neuroticism in 170,911 people (23). This Manhattan plot shows the significance of the association between neuroticism and
L = 6 524 432 variants (dark and light gray points) and overlapping regions of lengths 10 kb (blue bars), 100 kb (cyan bars), 1,000 kb (green bars), 10,000
kb (yellow bars), entire chromosomes (orange bars), and the whole genome (red bar). Significance is defined as the − log10 adjusted p-value, where the
p-value for region R is defined by Eq. 4 and adjusted by a factor w−1

R to enable direct comparison with the threshold α= 0.05 (black dashed line). The
conventional threshold of α= (5× 10−8)L is shown for comparison (gray dotted line).

improved on for “needle-in-a-haystack” problems. Conversely,
dependency among tests actually improves the sensitivity of
the HMP, because one significant test may be accompanied by
other correlated tests that collectively reduce the harmonic mean
p-value.

In some cases, the HMP found significant regions where
none of the individual variants were significant. For example,
no variants on chromosome 12 were significant by Bonferroni
correction nor by the conventional genome-wide significance
threshold of 5× 10−8. However, the HMP found significant
10-Mb regions spanning several peaks of nonsignificant individ-
ual p-values. One of those, variant rs7973260, which showed an
individual p-value for association with neuroticism of 2.4× 10−7,
had been reported as also associated with depressive symptoms
(p = 1.8× 10−9). Such cross-association or “quasireplication,”
in which a variant is nearly significant for the trait of interest
and significant for a related trait, can be regarded as providing
additional support for the variant’s involvement in the trait of
interest (23).

In chromosome 3, individual variants were found to be sig-
nificant by the conventional threshold of 5× 10−8, but neither
Bonferroni correction nor the HMP agreed that those variants
or regions were significant at an FWER of α= 0.05. Indeed, the
HMP found chromosome 3 nonsignificant as a whole. Variant
rs35688236, which had the smallest p-value on chromosome 3 of
2.4× 10−8, had not validated when tested in a quasireplication
exercise that involved testing variants associated with neuroti-
cism for association with subjective wellbeing or depressive
symptoms (23).

These observations illustrate that the HMP adaptively com-
bines information among groups of similarly significant tests
where possible, while leaving lone significant tests subject to
Bonferroni-like stringency, providing a general approach to com-
bining p-values that does not require specific knowledge of the
dependency structure between tests.

HMP Allows Large-Scale Testing for Higher-Order Interactions With-
out Punitive Thresholds. Scientific discovery is currently hindered
by avoidance of large-scale exploratory hypothesis testing for
fear of attracting multiple testing correction thresholds that ren-
der signals found by more limited testing no longer significant. A

good example is the approach to testing for pairwise or higher-
order interactions between variants in GWAS. The Bonferroni
threshold for testing all pairwise interactions invites a thresh-
old (L+ 1)/2 times more stringent than the threshold for testing
variants individually, and strictly speaking this must be applied
to every test, even though this is highly conservative because of
the dependency between tests. The alternative of controlling the
FDR risks a high probability of falsely detecting artifacts among
any genuine associations discovered. Therefore, interactions are
not usually tested for.

To show how model averaging using the HMP greatly alle-
viates this problem, I reanalyzed human and pathogen genetic
variants from a GWAS of pretreatment viral load in hepatitis
C virus (HCV)-infected patients (25) (SI Appendix, section 7).
Jointly analyzing the influence of human and pathogen variation
on infection is an area of great interest, but it requires a Bonfer-
roni threshold of α/(LH LP ) when there are LH and LP variants
in the human and pathogen genomes respectively, compared
with α/(LH +LP ) if testing the human and pathogen variants
separately. In this example, LH = 399 420 and LP = 827.

In the original study, a known association with viral load
was replicated at human chromosome 19 variant rs12979860 in
IFNL4 (p = 5.9× 10−10), below the Bonferroni threshold of
1.3× 10−7 for 399 420 tests. The most significant pairwise inter-
action that I found, assuming equal weights, involved the adja-
cent variant rs8099917 with p = 2.2× 10−10. However, this did
not meet the more stringent Bonferroni threshold of 1.5×
10−10 for 330 million tests (Fig. 2A). If the original study’s
authors had performed and reported 330 million tests, they
could have been compelled to declare the marginal association
in IFNL4 nonsignificant, despite what intuitively seems like a
clear signal.

Model averaging using the HMP reduces this disincentive to
perform additional related tests. Fig. 2B shows that, despite
no significant pairwise tests involving rs8099917, model aver-
aging recovered a combined p-value of 3.7× 10−8, below the
multiple testing threshold of 1.3× 10−7 for the 399 420 model-
averaged tests. Additionally, two viral variants produced statisti-
cally significant model-averaged p-values of 5.5× 10−5 and 4.8×
10−5 at polyprotein positions 10 and 2,061 in the capsid and
NS5a zinc finger domain (GenBank accession no. AQW44528),
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Fig. 2. Joint human–pathogen GWAS reanalysis of viral load in 410 HCV genotype 3a-infected white Europeans (25). All pairs of human nucleotide variants
and viral amino acid variants were tested for association. Interactions between human and virus variants’ effects on viral load were not constrained to be
additive. (A) Significance of 330,320,340 tests plotted by position of both the human and the viral variants. (B) Significance of 399,420 human variants model
averaged using the HMP over every possible interaction with 827 viral variants and vice versa. The significance thresholds controlling the FWER at α= 0.05
are indicated (black dashed lines): α/(LHLP), α/LH, and α/LP .

below the multiple testing threshold of 6.0× 10−5 for the 827
model-averaged tests.

These results show how model averaging using the HMP can
assist discovery making by (i) encouraging tests for higher-order
interactions when they otherwise would not be attempted and (ii)
recovering lost signals of marginal associations after performing
an “excessive” number of tests.

Untangling the Signals Driving Significant Model-Averaged p -Values.
When more than one alternative hypothesis is found to be sig-
nificant, either individually or as part of a group, it is desirable
to quantify the relative strength of evidence in favor of the
competing alternatives. This is particularly true when disentan-
gling the contributions of a group of individually nonsignificant
alternatives that are significant only in combination.

Sellke et al. (18) proposed a conversion from p-values to
Bayes factors which, when combined with prior information
and test power through the model weights, produces posterior
model probabilities and credible sets of alternative hypothe-
ses. SI Appendix, section 5 details how the Bayes factors are
approximately proportional to the weighted inverse p-values.
This linearity mirrors the HMP itself, the inverse of which is an
arithmetic mean of the inverse p-values.

After conditioning on rejection of the null hypothesis by nor-
malizing the approximate model probabilities to sum to 100%,
the probability that the association involved human variant
rs8099917 was 54.4%. This signal was driven primarily by the
three viral variants with the highest probability of interacting
with rs8099917 in their effect on pretreatment viral load: position
10 in the capsid (10.9%), position 669 in the E2 envelope (8.7%),
and position 2,061 in the NS5a zinc finger domain (11.4%)
(Fig. 3). Even though the model-averaged p-value for the enve-

lope variant was not itself significant, this revealed a plausible
interaction between it and the most significant human variant
rs8099917.

Discussion
The HMP provides a way to calculate model-averaged p-values,
providing a powerful and general method for combining tests
while controlling the strong-sense FWER. It provides an alter-
native to both the overly conservative Bonferroni control of the
FWER, and the lower stringency of FDR control. The HMP
allows the incorporation of prior information through model

Fig. 3. In the joint human–HCV GWAS, the approximate posterior probabil-
ity of association with rs8099917 was 54.4% in total, with the most probable
interactions involving three polyprotein positions.
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weights and is robust to positive dependency between the p-
values. The HMP is approximately well calibrated for small
values, while a null distribution, derived from generalized cen-
tral limit theorem, is easily computed. When the HMP is not
significant, neither is any subset of the constituent tests.

The HMP is more appropriate for combining p-values than
Fisher’s method when the alternative hypotheses are mutu-
ally exclusive, as in model comparison. When the alternative
hypotheses all have the same nested null hypothesis, the HMP
is interpreted in terms of a model-averaged likelihood ratio
test. However, the HMP can be used more generally to com-
bine tests that are not necessarily mutually exclusive but that
may have positive dependency, with the caveat that more power-
ful approaches may be available depending on the context. The
HMP can be used alone or in combination: for example, with
Fisher’s method to combine model-averaged p-values between
groups of independent data.

The theory underlying the HMP provides a fundamentally
different way to think about controlling the FWER through
multiple testing correction. The Bonferroni threshold increases
linearly with the number of tests, whereas the HMP is the
reciprocal of the mean of the inverse p-values. To maintain sig-
nificance with Bonferroni correction, the minimum p-value must
decrease linearly as the number of tests increases. This strongly
penalizes exploratory and follow-up analyses. In contrast, when

the false positive rate α is small, maintenance of significance with
the HMP requires only that the mean inverse p-value remains
constant as the number of tests increases. This does not penalize
exploratory and follow-up analyses so long as the “quality” of the
additional hypotheses tested, measured by the inverse p-value,
does not decline.

Through example applications to GWAS, I have shown that
the HMP combines tests adaptively, producing Bonferroni-like
adjusted p-values for needle-in-a-haystack problems when one
test dominates, but able to capitalize on numerous strongly
significant tests to produce smaller adjusted p-values when war-
ranted. I have shown how model averaging using the HMP
encourages exploratory analysis and can recover signals of sig-
nificance among groups of individually nonsignificant tests, prop-
erties that have the potential to enhance the scientific discovery
process.
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