
 

omegaMap version 0.5 

 
DOCUMENTATION 

 

 

 
 

 

 

Daniel J. Wilson 

19th April 2006



Acknowledgements 
 
Firstly, thanks to Gil McVean who is the co-author of the method implemented here 
in omegaMap1. I would like to thank my office-mates who have helped with 
programming in C++ and R2: Chris Spencer, Graham Coop and Adam Auton. 
omegaMap uses some functions from the PAML package3, which is written by 
Ziheng Yang, who kindly provided the code. For offering useful ideas and statistical 
advice I would like to thank Stephen Leslie, Jonathan Marchini and Bob Griffiths. I 
am grateful to Rachel Urwin and Martin Maiden for their help and advice in applying 
omegaMap to meningococcal porin antigens, and Jeremy Derrick for sending me the 
molecular structures. Much of the simulation work required to test omegaMap was 
performed on a multinode AMD compute cluster that was bought with a grant 
awarded by the Wolfson Foundation to Peter Donnelly. Finally I would like to thank 
the Biotechnology and Biological Sciences Research Council, who funded this 
research. 
 
 

1. The reference for omegaMap is D.J. Wilson and G. McVean (2006) Genetics 
doi: 10.1534/genetics.105.044917. Available from http://www.genetics.org. 

2. R is available for free from http://www.r-project.org. R Development Core 
Team (2005). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

3. PAML is available for free from 
http://abacus.gene.ucl.ac.uk/software/paml.html. Z. Yang, (1997) PAML: a 
program package for phylogenetic analysis by maximum likelihood. Comput. 
Appl. Biosci. 13: 555-556. 

 
 
 



Table of Contents 
 
Acknowledgements....................................................................................................2 
Table of Contents.......................................................................................................3 
1 Introduction........................................................................................................4 
2 Installing omegaMap ..........................................................................................5 

2.1 Download omegaMap.................................................................................5 
2.2 Ready-to-use executables............................................................................5 
2.3 Compiling omegaMap manually .................................................................5 

3 Analysis .............................................................................................................6 
3.1 Configure the model ...................................................................................6 

3.1.1 General settings...................................................................................7 
3.1.2 Specifying the priors ...........................................................................8 
3.1.3 Modelling variation in �  and � ..........................................................10 

3.2 Run omegaMap ........................................................................................10 
3.3 Interpret the output ...................................................................................10 

3.3.1 Automatic interpretation using summarize ....................................12 
3.3.2 Manual interpretation of the output ...................................................13 

4 Encoded datafiles .............................................................................................18 
5 Sample R code .................................................................................................19 
6 Molecular rendering .........................................................................................24 
7 Key assumptions of the model ..........................................................................26 
8 Configuration file options.................................................................................27 
 
 
 
 
 



1 Introduction 
 
omegaMap is a program for detecting natural selection and recombination in DNA or 
RNA sequences. It is based on a model of population genetics and molecular 
evolution. The signature of natural selection is detected using the dN/dS ratio (which 
measures the relative excess of non-synonymous to synonymous polymorphism) and 
the signature of recombination is detected from the patterns of linkage disequilibrium. 
The model and the method of estimation are described in 
 

Estimating diversifying selection and functional constraint  
in the presence of recombination 

Daniel J. Wilson and Gilean McVean 
Genetics doi:10.1534/genetics.105.044917 

 
This is an instruction manual for downloading, installing and running omegaMap. It is 
likely that you will want to read most of what is written if you want to use the 
program properly. Even so, reading a manual is nearly as tedious as writing one, so 
I’ve tried to set things out in a clear order and I’ve tried to emphasize important 
points. 
 
The layout is designed to read as you go along, i.e. as you are installing the program, 
as you check it has installed correctly, and as you try out a first analysis. So hopefully 
you’ ll be able to read it as you go along, rather than sitting down and laboriously 
pouring over the entire manual. 
 
There are several things you will need in addition to omegaMap. These are: 

1. A text editing program such as Notepad or Emacs 
2. A statistics package such as R or a spreadsheet such as Excel. 
3. One or more fast computers that you can leave running for hours if not days. 

 
And also an understanding of  

1. The assumptions made by the model (see Key assumptions) 
2. Bayesian inference and posterior distributions 



2 Installing omegaMap 
 

2.1 Download omegaMap 
omegaMap is available for download from 
 

www.danielwilson.me.uk 
 
From there you have the choice of downloading ready-to-use executables for 
Windows and Mac, or downloading the source code which you can then compile 
manually on any platform with a compatible C++ compiler. 
 

2.2 Ready-to-use executables 
The easiest thing to do is to download the executable for your operating system 
(currently ready-to-use executables are available for several versions of Windows and 
Mac). The executables you need are:  

1. omegaMap  
2. decode 
3. summarize 

The programs decode and summarize are utilities for omegaMap, and are described 
in Encoded datafiles and Automatic interpretation using summarize respectively. 
 

2.3 Compiling omegaMap manually 
This might be preferable not only if you are using Linux or Unix, etc, but also because 
it allows the code to be optimized to your hardware which may improve performance 
by perhaps 10%. 
 

1. Download the compressed source code from the website. 
2. Unzip the compressed source code. 
3. In the omegaMap directory, type 

  make 

 
Didn’ t work? For this to work you’ll need gcc installed and properly configured. If 
you have a different compiler you can edit makefile accordingly. If it doesn’t work 
properly it’s probably because 

1. gcc or some of its libraries are not installed or configured correctly on your 
computer. You will need to speak to your computer support staff. 

2. There are minor differences between your version of gcc and the version used 
to write omegaMap. In this case someone you know with knowledge of C++ 
might be able to fix the problem by making small changes to the source code 
or the makefiles. 

If compiling omegaMap manually is too problematic you should consider 
downloading the ready-to-use executables. 
 



3 Analysis 
 
There are at least three steps to any analysis 

1. Configure the model, which includes specifying the priors 
2. Run omegaMap 
3. Interpret the output 
 

omegaMap offers additional functionality 
1. Storing the output in an encoded format rather than a text file. This allows the 

whole information about the MCMC chain to be stored compactly. A text file 
can be extracted later using the program decode. 

2. Simplifying the output of the MCMC chain using the program summarize, 
which automatically performs straightforward analyses of the data. 

3. Finally, estimates of the dN/dS ratio can be superimposed on to the 3D 
structure of a molecule if you have the appropriate structural information and 
molecular rendering software. 

For more details see the sections Encoded datafiles, Automatic interpretation using 
summarize and Molecular rendering. 
 

 
As an example, we have 10 sequences each 1kb long in the file genes.txt. An 
analysis might run like this. 
 

3.1 Configure the model 
This is done by writing a configuration file, which you might call genes.ini. 
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Figure 1 Flowchart of the analyses available using omegaMap. 



3.1.1 General settings 
First specify the filename for the FASTA file 
 
FASTA = "/home/wilsondj/omegaMap/genes.txt" 

 
Next specify the equilibrium frequencies of the 61 non-STOP codons. If this isn’ t 
specified the frequencies will be estimated empirically from genes.txt, which is a 
bad idea because some codons may not appear at all in your dataset. Better would be 
to refer to a whole genome sequence. The simplest approach is to assume all codons 
have equal frequency (i.e. frequency 1/61). This will probably suffice for a 
preliminary analysis, and can be revised later. So 
 
pi=.016393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.0
16393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.016393
,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.016
393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.
016393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.01639
3,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.01
6393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,.016393,
.016393 

 
(The order of the codons in this list is assumed to be TTT, TTC, TTA, TTG, TCT, 
...). 
 
The number of orderings of the PAC likelihood must be chosen (see Wilson and 
McVean [2006] for details). In general, the more orderings the better, but the slower 
omegaMap will run. Ten orderings is suggested as a sensible number for a serious 
analysis. Only for a preliminary analysis, you might choose one ordering (this will 
make omegaMap run 10 times faster, but the results will not be reliable, meaning that 
replicate analyses undertaken with a different ordering will yield different results). 
 
norders = 10 

 
You can then specify the orderings using a list of numbers whose length equals the 
number of sequences (n = 10 in our case) multiplied by the number of orderings 
(norders = 10). The list consists of norders sequences of n numbers, each of which is 
one of the orderings. Each ordering should be a random permutation of the numbers 
0, 1, …, n − 1. An example is given below. The benefit of specifying the exact 
orderings is so that omegaMap can be run twice using the same orderings to make 
sure the results match. If they do, then the analysis has worked. To generate a list of 
random orderings use the program order, included with omegaMap. The syntax is 
  order sample-size number-of-orderings 

 
orders = 0, 8, 5, 7, 6, 1, 3, 9, 4, 2, 4, 3, 1, 9, 6, 8, 7, 0, 2, 5, 
8, 1, 5, 0, 7, 3, 2, 6, 9, 4, 5, 9, 0, 4, 1, 6, 7, 8, 2, 3, 9, 7, 8, 
2, 5, 0, 4, 3, 6, 1, 1, 0, 5, 6, 7, 3, 8, 9, 2, 4, 5, 1, 3, 9, 0, 7, 
6, 2, 8, 4, 8, 7, 1, 0, 4, 9, 3, 2, 5, 6, 7, 0, 6, 5, 4, 9, 8, 1, 3, 
2, 3, 4, 5, 8, 0, 2, 9, 6, 7, 1 

 
The number of iterations of the MCMC algorithm is specified using niter. For any 
dataset this number will be at least ~10 000 in magnitude, if not ~100 000 or even 
~1 000 000. The choice of niter depends on the number of sequences, the length of 



the sequences, the average length of an omega or rho block (specified using oBlock 
and rBlock below) and nuances of the data itself (in particular whether the model is a 
good fit to the data). Computer time might limit the number of iterations you can 
perform, but in general, niter must be large enough so that two runs of omegaMap 
with the same orderings give identical results (to within an acceptable margin of 
error). The best thing to do is to run a preliminary analysis to get an idea of (i) how 
long an iteration takes and (ii) how many iterations will be required. More info about 
assessing reliability of results is given later in Interpret the output. 
 
niter = 250,000 

 
The output file is a text file whose columns are the model parameters and whose rows 
correspond to particular iterations of the MCMC chain. Together, the rows constitute 
non-independent draws from the joint posterior distribution of the parameters. Specify 
the name of the output file using outfile. 
 
outfile = "genes.out.txt" 

 
One row of the output file is written every thinning iterations, so to output every 
hundredth iteration use thinning = 100 or to output every iteration use 
thinning = 1 (beware the amount of disk space required!) 
 
thinning = 100 

 
By default you cannot write to a file that already exists, unless you specify the 
following option 
 
overwrite = true 

 
More options can be found in Configuration file options. 
 

3.1.2 Specifying the priors 
There are two approaches to prior specification in Bayesian analysis: objective or 
subjective. The description here is meant as a guide only, and not an authoritative 
account. A subjective prior is one which represents the earnest prior beliefs of the 
researcher about the probable values of the parameters before performing the analysis. 
This can be achieved by careful consideration of what distribution describes your 
prior beliefs most closely. Many researchers prefer to try to specify an objective prior 
either because of the difficulty in carefully formulating a subjective prior or because 
they are uncomfortable with prejudicing the results of the analysis with their prior 
beliefs. There is disagreement over what exactly an objective prior is, some Bayesians 
think that there can be no truly objective prior, so instead objective priors are 
sometimes referred to as reference, vague or non-informative priors. 
 
Currently, the distributions available in omegaMap are 

1. Exponential 
2. Exponential ratio* 
3. Gamma 

4. Improper inverse* 
5. Improper uniform 
6. Inverse* 



7. Log normal* 8. Uniform 
 
Details about the parameters of the distributions and how to set them are available in 
Configuration file options.  
 
If the above distributions are to be used to specify subjective priors, then the choice 
will need justification when the results of the analysis are presented. All the 
parameters in omegaMap (� , � , � , �  and � ) are constrained to be positive. Therefore 
an objective prior will probably be one that is symmetric on the log scale. 
Distributions that are symmetric on the log scale are denoted with an asterisk above. 
 
In the absence of any inspiration guiding you to a choice of prior, the following is a 
suggested reference prior: 

• Improper inverse distributions on � , � , and � . 
• If using the constant or independent model for variation in �  and �  along the 

sequence, use improper inverse distributions on these as well. 
• Otherwise, use the inverse distribution and specify maximum and minimum 

values for �  and � . 
 
muPrior = improper_inverse 
kappaPrior = improper_inverse 
indelPrior = improper_inverse 
omegaPrior = inverse 
omegaParam = 0.01, 100 
rhoPrior = inverse 
rhoParam = 0.01, 100 

 
The inverse distribution corresponds to a uniform distribution on the log scale. The 
maximum and minimum values for uniform or inverse priors on �  and �  need to be 
chosen carefully. They should be wide enough that they do not constrain the posterior 
(i.e. the posterior density outside the range would have been essentially zero even if a 
wider range had been used). However, making the range unnecessarily wide will 
inadvertently cause over-smoothing of the variation in �  or �  along the sequence. If 
during the interpretation it appears that you set the range to be too narrow, you can 
repeat the analysis using a wider range. 
 
Note that when using improper priors for any of the parameters (improper_uniform 
or improper_inverse), omegaMap can no longer automatically choose the initial 
values of those parameters in the MCMC chain. (For proper prior distributions, the 
initial values are by default drawn randomly from the prior.) The initial values must 
be set manually using the options muStart, etc (see Configuration file options). Initial 
values that have extremely low posterior probability can cause the MCMC to fail to 
converge. A sensible guess or a previous estimate should be used. As long as the 
number of iterations is sufficiently large, the initial values will not bias the results of 
omegaMap. It is good practice to use different initial values for different MCMC runs. 
 
muStart = 0.1 
kappaStart = 3.0 
indelStart = 0.1 

 



3.1.3 Modelling variation in �  and �  
There are three models for variation in �  (and likewise � . The models do not need to 
be the same for both parameters. For the purpose of illustration, I’ll refer simply to �  
for the rest of this section.) 

1. Constant 
All sites are assumed to share a common � . 

2. Variable 
A block-like model is used in which adjacent sites can share the same � . 
When using the variable model, the average length of a block has to be 
specified. This is turn controls the strength of the block structure. Broadly 
speaking, the longer the average length of a block, the smoother the variation 
in �  will appear in the posterior. 

3. Independent 
Each site is assumed to have its own �  independent of all other sites. 

Computationally speaking, the constant model is by far the quickest. The independent 
model will take the longest for the MCMC to converge, because there are many more 
parameters. The variable model will take an intermediate amount of time, depending 
on the average block length (longer blocks lead to greater smoothing and faster 
convergence). 
 
omega_model  = var i abl e 
oBl ock = 30 
r ho_model  = var i abl e 
r Bl ock = 30 

 

3.2 Run omegaMap 
Having prepared the configuration file, genes. i ni  say, then from the command line 
type, in Windows 
 
omegaMap genes. i ni  

 
or in Linux 
 
. / omegaMap genes. i ni  

 
By using additional flags after the configuration filename, it is possible to override 
options set in the configuration file. More details are contained in Configuration file 
options, but for example, to save the output to a different file use 
 
omegaMap genes. i ni  –out f i l e di f f er ent . t xt  ( i n Wi ndows)  
. / omegaMap genes. i ni  –out f i l e di f f er ent . t xt  ( i n Li nux)  

 
Overriding options in the configuration file might be useful, for example, when 
performing batches of analyses together, in which all but a few options stay the same. 
 

3.3 Interpret the output 
omegaMap produces a text file (the name specified above by the out f i l e option), the 
columns of which correspond to the model parameters (i.e. � , �  and � , and �  and �  for 
each codon plus the locations of the boundaries between blocks with common �  or �  



parameters), as well as a few columns containing other information (e.g. the iteration 
number, the likelihood). 
 
Statistical packages: Entries in the file are separated by tabs, so it can be read by 

many statistical packages or spreadsheets. However, for analysing proper datasets 
the file is likely to be very large. It may be too large for a program such as Excel. 
Something more powerful such as R or S Plus is recommended (R is available for 
free from www.r-project.org). If you are familiar with Excel you might want to 
use it to open the text output of exploratory analyses that have a small number of 
iterations, just to get a feel for the layout of the file. If you prefer to stick with 
Excel (or equivalent) for proper analyses, rather than go to the trouble of learning 
a new package (such as R), then the program summarize will produce a more 
manageable summary of the output. See section Automatic interpretation using 
summarize. If you would like to use R, then see the Sample R code section. 

 
Each row of the text file corresponds to a particular iteration of the MCMC chain. 
Therefore, the entries of a particular column make up the estimate of the posterior 
distribution of that parameter. The posterior distribution for that parameter can be 
visualized by plotting a histogram of the entries of that column. For example, a 
histogram of the �  column gives an estimate of the posterior distribution of � . 

 
The mean and credible interval (the Bayesian equivalent of a confidence interval) can 
also be estimated from the entries of that column. In this case they would be 4.9 and 
(4.2, 5.8). 
 
There are a couple of things to bear in mind 

1. To improve the estimate of the posterior distribution, a burn-in is usually 
removed from the beginning of the chain. For example, the first 20 000 
iterations of a 500 000 iteration chain might be discarded. The reason for 
removing the burn-in is because at the beginning the chain will be unduly 
influenced by the starting values, which are usually drawn from the prior. 

2. Consecutive iterations in the MCMC chain are not independent of one another. 
This is a good reason for using a thinning interval of greater than 1. 
Depending on the strength of the autocorrelation (i.e. the strength of the non-
independence between consecutive iterations), a large thinning interval (e.g. 
100 or even 1 000) may be used without a great loss of information, thus 
saving on disk space. 

 



The amount of burn-in to remove is usually chosen by plotting the traces of a handful 
of the parameters, and deciding how many iterations it takes before the chain is 
independent of the initial values. For example, the trace of �  below shows that the 
initial value of 0.14, which would have a very low posterior density, continues to 
affect the MCMC chain for the first 3 000 iterations (marked in red). So to improve 
the estimate of the posterior distribution of � , a burn-in of 3 000 iterations should be 
removed. 

 
The autocorrelation is also evident in this trace: adjacent points in the trace are likely 
to have similar values of � , notwithstanding the fact that a thinning interval of 100 has 
been used. I.e. the autocorrelation is still apparent (even by visual inspection) at a lag 
(distance) of 100 iterations. 
 

3.3.1 Automatic interpretation using summarize 

The program summarize will read in the output file of omegaMap and automatically 
generate means and credible intervals for � , �  and � , and �  and �  for each codon. The 
results can be opened in a spreadsheet, for example Excel, and plotted. By specifying 
multiple output files, the results of two or more independent runs can be merged. 
 
The output from summarize is self-explanatory, and it should be straightforward to 
use the summary to produce figures in a familiar spreadsheet package. summarize is 
run from the command line using the syntax 
  summarize burnin filename1 

or, when merging multiple runs (in this case three) 
  summarize burnin filename1 filename2 filename3 

The program ought to take no more than a minute or so to run, maybe less. 
 
The summarize program should not be treated as a black box, because it does not 
circumvent the problems of choosing the burn-in, or establishing whether the MCMC 
chain has converged. However, it can be used to diagnose convergence as follows 
 

1. Take the output files of two or more runs of omegaMap that you hope have 
been allowed to run long enough to converge, e.g. 500 000 iterations. Suppose 
you have called them genes.out1.txt and genes.out2.txt. 

2. Decide what a reasonable burn-in might be. If you really do believe that the 
chains have been allowed to run for long enough, then a burn-in of 10% of the 
total number of iterations might be appropriate. 



3. Run summarize on each output file separately. E.g. (the > sends the output to a 
file) 
./summarize 50000 genes.out1.txt > genes.summary1.txt 
./summarize 50000 genes.out2.txt > genes.summary2.txt 

4. Open genes.summary1.txt and genes.summary2.txt into a spreadsheet 
such as Excel. For every parameter, compare the mean and credible intervals 
for the two runs and determine whether they match to within an acceptable 
degree of error. For the �  and �  parameters, you might want to plot the mean, 
upper and lower credible interval against the codon position to allow a visual 
comparison. 
For example, the figure below shows, for a single run, a plot of the mean and 
higher and lower 95% HPD bound for �  against codon position. The graph 
was produced in Excel. The y axis is on a logarithmic scale. By producing this 
plot separately for two independent runs, the two figures could be compared to 
see if the runs have converged. 
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5. If the chains have converged, the independent runs can be merged to obtain 

the final estimates of the mean and credible intervals for each parameter. 
./summarize 50000 genes.out1.txt genes.out2.txt > genes.summary.txt 

 
If the chains have failed to converge, they may simply need to be run for longer. 
However, a lack of convergence might also be caused by poor choice of priors, or 
severe model mis-specification, meaning that the data do not fit the model at all. In 
the latter cases, summarize may not be enough to diagnose the problems, and manual 
inspection of the output files might be necessary. 
 

3.3.2 Manual interpretation of the output 
The MCMC output files can be opened directly into a spreadsheet, allowing traces to 
be plotted, and summaries of the data not provided by summarize. Excel has an upper 
limit to the size of files it can open, so it might be necessary to use a more powerful 
program such as R (available free from www.r-project.org) or S Plus. 
 
The following is an example analysis, using functions detailed in the section Sample 
R code, and performed in R. Code written in R should also work in S Plus. The 
session starts by copying and pasting the functions from the file R-functions.txt. 
 
### Set the working directory (use forward slashes, even in Windows) 
setwd("E:/Temp") 
 
### Load the two independent MCMC runs. 



### The orderings were the same for both runs. 
run1 <- open.omegaMap("o.carriage0.txt") 
run2 <- open.omegaMap("o.carriage1.txt") 
 
### Create a list of the runs 
runs <- list(run1=run1,run2=run2) 
 
### Look at the traces for a couple of parameters to assess 
### what burn-in is required 
trace.omegaMap(runs,"mu") 
trace.omegaMap(runs,"kappa") 

  
 
### The traces suggest a short burn-in is required. 
### Use the xlim option to get a better view. 
### Another useful option is ylim. 
trace.omegaMap(runs,"mu",xlim=c(0,50000)) 
trace.omegaMap(runs,"kappa",xlim=c(0,50000)) 
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### Remove a short burn-in of 5000 iterations 
run1b <- remove.burnin(run1,20000) 
run2b <- remove.burnin(run2,20000) 
runs <- list(run1=run1b,run2=run2b) 
 
### Assess convergence of omega and rho 
mycols <- c("red","green")            # Change the default colours 
plot.omega.converged(runs,cols=mycols) 
plot.omega.converged(runs,cols=mycols,log="") # Not on a log scale 
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### The chains have converged for omega, so check rho 
x11()                           # Create a new window 
plot.rho.converged(runs,cols=mycols) 
### The chains do appear to have converged, so continue the analysis. 
### Plot the posterior distribution of omega across sites, for 
### the two runs combined. 
plot.omega(runs) 
### Add a line at omega=1 to aid interpretation  
lines(c(0,1000),c(1,1),lty="dashed")  
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### The same information be alternatively represented by a fireplot. 
fireplot.omega(runs)             # This one can take a little while. 
### Notice the difference in how to add a line at omega=1 here 
lines(c(0,1000),log(c(1,1)),lty="dashed",col="white") 
### The contrast between high, mid and low posterior densities 
### is poor. So try changing the colfunc option. 
fireplot.omega(runs,colfunc=function(x){log(x+.001)}) 
lines(c(0,1000),log(c(1,1)),lty="dashed",col="white") 
 



 
 
### Pl ot  t he post er i or  pr obabi l i t y of  posi t i ve sel ect i on.  
posi t i vel y. sel ect ed. si t es( r uns)  
### And t he post er i or  on r ho,  f or  t he r uns combi ned.  
pl ot . r ho( r uns)  

0 50 100 150 200 250 300

0.
0

0
.2

0
.4

0.
6

0
.8

1
.0

Posterior probability of positive selection

Codon position

0 50 100 150 200 250 300

0.
00

5
0.

02
0

0
.0

50
0.

2
00

0.
50

0

Codon position

ρ

 
 
### Can l ook at  t he hi st ogr ams of  t he ot her  par amet er s 
names( r un1)                      # Li st s al l  par amet er s 
par ( mf col =c( 1, 3) )             # Thr ee pl ot s t o a wi ndow 
hi st . omegaMap( r uns, " mu" )  
### Set  col our  t o yel l ow 
hi st . omegaMap( r uns, " kappa" , col =" yel l ow" )  
### Set  col our  t o r ed and number  of  bar s t o 200 
hi st . omegaMap( r uns, " phi " , col =" r ed" , br eaks=200)  
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### Rest or e one pl ot  t o a wi ndow 
par ( mf col =c( 1, 1) )  
### Obt ai n var i ous summar i es of  t he post er i or s pl ot t ed above 
### Ef f ect i ve sampl e si zes ( ESS' s)  shoul d be gr eat er  t han 100.  
### I f  not ,  t he MCMC chai ns have not  been r un l ong enough.  
 



point.estimate(runs,"mu") 
hpd.omegaMap(runs,"mu") 
 
effective.sample.size(runs,"mu") 
 
point.estimate(runs,"kappa") 
hpd.omegaMap(runs,"kappa") 
 
effective.sample.size(runs,"kappa") 
 
point.estimate(runs,"phi") 
hpd.omegaMap(runs,"phi") 
 
effective.sample.size(runs,"phi") 
 

 [1] 0.2633618 
Lower Bound Upper Bound  
   0.182823    0.370466  
 [1] 873.0125 
 
 [1] 3.537345 
Lower Bound Upper Bound  
    2.48014     5.13964  
 [1] 1692.624 
 
[1] 0.08113412 
Lower Bound Upper Bound  
  0.0292725   0.2179990  
 [1] 3787.016 

 

 
 
 



4 Encoded datafiles 
 
When the outfile option only is specified in the configuration file, then unless a 
thinning interval of 1 is used (which would result in a very large file), then it is 
impossible to reduce the thinning interval at a later stage (because the information 
was never saved). This is not usually a problem, but when diagnosing a problem with 
the MCMC chain it could be useful to view the chain at all iterations. 
 
By specifying the datafile option, the whole MCMC chain is stored in an encoded 
format. From experience, the size of a datafile is roughly equal to the size of an 
outfile with a thinning interval of 100. The difference is that any thinning interval 
can subsequently be extracted from the datafile using the decode program. 
 
So for example, instead of (or as well as) specifying outfile in the configuration file 
(call it genes.ini, say), datafile is specified. 
 
datafile = "genes.data.txt" 

 
Before any analysis can be performed on genes.data.txt, it must be decoded as 
follows. For example, with a thinning interval of 69. 
  decode genes.data.txt genes.decoded.txt 69 

For independent runs, the datafiles are decoded separately. 
 
The file genes.decoded.txt is then equivalent to an outfile, and can be manually 
interpreted as explained in Manual interpretation of the output, or summarised using 
the summarize program. For example, 
  summarize genes.decoded.txt > genes.summary.txt 

or 
summarize genes.decoded1.txt genes.decoded2.txt > genes.summary.txt 

 



5 Sample R code 
 
The file R-functions.txt contains R code for reading in the text output from 
omegaMap, and generating some simple plots. The functions are 
 
open.omegaMap() 
trace.omegaMap() 
remove.burnin() 
plot.omega.converged() 
plot.rho.converged() 
plot.omega() 
plot.rho() 
fireplot.omegaMap() 
fireplot.rho() 
positively.selected.sites() 
hist.omegaMap() 
point.estimate() 
hpd.omegaMap() 
effective.sample.size() 
 

To use the code, simply copy and paste all the functions in to an R session. The file 
R-example.txt contains an example of how the functions might be used, and gives 
an indication of some other useful built-in functions in R. What follows is an 
explanation of the usage of the functions. 
 
Some of these functions borrow code from the R packages boa and coda. The relevant 
code was lifted straight from these packages and copied into the omegaMap functions 
to make life as easy as possible for people wishing to use R to interpret output from 
omegaMap. So apologies to the following authors, part of whose R code I have stolen: 
Brian J. Smith, Kate Cowles, Nicky Best, Karen Vines and Martyn Plummer. The 
packages boa and coda are available in their entirety from www.r-project.org. 
 
open.omegaMap(filename, burnin=0, ...) 
filename Name of the file to open, in quotes 
burnin Number of iterations of burn-in to remove from the 

beginning. Default is zero. 
... Further i/o options. Type ?read.table for more 

information 
 
Opens an MCMC outfile for omegaMap. Note that this function can take 
a long time to run, depending on the size of the file being opened. 
 
Examples run1 <- open.omegaMap("spinosa.outa.txt") 
 run2 <- open.omegaMap("spinosa.outb.txt") 
 
trace.omegaMap(runs,param,cols=palette(),...) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

param Name of the parameter to plot in quotes. For a list of 
available parameters type names(run). 

cols Colours to use to distinguish the traces of the different 
runs. Default is to use the built-in palette. 

... Further plotting options. Type ?plot or ?par for more 
information. 

 



Plot the trace of a parameter against iteration number for one or 
more MCMC runs. 
 
Examples trace.omegaMap(list(run1,run2),"mu") 
 trace.omegaMap(list(run1,run2),"mu",cols=c("red","green")

) 
 trace.omegaMap(list(run1,run2),"kappa",ylim=c(0,20)) 
 trace.omegaMap(list(run1,run2),"phi",type="p") 
 
remove.burnin(run, burnin) 
run Name of an object containing a single MCMC run, *not* of 

the form list(run). 
burnin The number of iterations to remove from the start of the 

MCMC chain. 
 
Removes a burn-in from the beginning of the MCMC chain, in 
preparation for further analysis. 
 
Examples run1 <- remove.burnin(run1,20000) 
 run2 <- remove.burnin(run2,20000) 
 
plot.omega.converged(runs,log="y",cols=palette(),width=c(1,2,1)) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

log Whether the x and y axes are on a log scale. The default 
is "y", indicating that only the y axis is to be plotted 
on the log scale. The alternatives are "", "x" and "xy". 

cols Colours to use to distinguish the plots of the different 
runs. Default is to use the built-in palette. 

with Width of the lines used to plot each run, of the form 
width=c(i,j,k) where (i,j,k) correspond to (lower 
credible bound, mean, higher credible bound) 
respectively. The default is for the mean to be plotted 
thicker. 

 
Plots the mean and credible intervals for omega along the gene, 
separately for each run. The runs can then be compared to see if they 
have converged to within an acceptable degree of tolerance. 
 
Examples plot.omega.converged(list(run1,run2)) 
 plot.omega.converged(list(run1,run2),log="") 
 plot.omega.converged(list(run1,run2),width=c(1,4,1)) 
 
plot.rho.converged(runs,log="y",cols=palette(),width=c(1,2,1)) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

log Whether the x and y axes are on a log scale. The default 
is "y", indicating that only the y axis is to be plotted 
on the log scale. The alternatives are "", "x" and "xy". 

cols Colours to use to distinguish the plots of the different 
runs. Default is to use the built-in palette. 

with Width of the lines used to plot each run, of the form 
width=c(i,j,k) where (i,j,k) correspond to (lower 
credible bound, mean, higher credible bound) 
respectively. The default is for the mean to be plotted 
thicker. 

 



Plots the mean and credible intervals for rho along the gene, 
separately for each run. The runs can then be compared to see if they 
have converged to within an acceptable degree of tolerance. 
 
Examples plot.rho.converged(list(run1,run2)) 
 plot.rho.converged(list(run1,run2),log="") 
 plot.rho.converged(list(run1,run2),width=c(1,4,1)) 
 
plot.omega(runs,log="y",...) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

log Whether the x and y axes are on a log scale. The default 
is "y", indicating that only the y axis is to be plotted 
on the log scale. The alternatives are "", "x" and "xy". 

... Further plotting options. Type ?plot or ?par for more 
information. 

 
Plots the mean and credible intervals for omega along the gene, 
combining the runs. 
 
Examples plot.omega(list(run1,run2)) 
 plot.omega(list(run1,run2),log="") 
 lines(c(0,1000),c(1,1),lty="dashed") # draws line at 1 
 
plot.rho(runs,log="y",...) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

log Whether the x and y axes are on a log scale. The default 
is "y", indicating that only the y axis is to be plotted 
on the log scale. The alternatives are "", "x" and "xy". 

... Further plotting options. Type ?plot or ?par for more 
information. 

 
Plots the mean and credible intervals for rho along the gene, 
combining the runs. 
 
Example plot.rho(list(run1,run2)) 
 
fireplot.omega(runs,log="y",yres=100,colfunc=function(x){x}, 
cols=heat.colors(100)) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

log Whether the y axis only is on a log scale. The default is 
"y", indicating that only the y axis is to be plotted on 
the log scale. The alternative is "". 

yres Number of equal-width bins to split log(omega) or omega 
into. Defaults to 100. 

colfunc A function used to vary the colour contrast of the 
histogram. See below for more details. Defaults to 
function(x){x}. 

cols The palette from which to draw the colours. Defaults to 
the heat colour palette, with 100 gradations. Type 
?heat.colors for more information. 

 
Produces a fireplot of log(omega) or omega. A fireplot visualizes the 
posterior on log(omega) or omega along the sequence using a colour 
gradient. By default higher posterior density is represented by more 
intense colour (closer to white), and lower posterior density is 



represented by less intense colour (closer to red). The palette used 
can be changed using the option cols. For a smoother gradation of 
colours try cols=heat.colors(500). The contrast between high, mid and 
low density colours can be changed using the colfunc option. By 
default a linear function is used, but a useful alternative is 
colfunc=function(x){log(x+.001)}. Varying .001 can produce a wide 
range of colour contrasts. 
 
Examples fireplot.omega(list(run1,run2)) 
 fireplot.omega(list(run1,run2),colfunc=function(x){log(x+

.001)}) 
 fireplot.omega(list(run1,run2),cols=rainbow(100)) 
 
fireplot.rho(runs,log="y",yres=100,colfunc=function(x){x}, 
cols=heat.colors(100)) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

log Whether the y axis only is on a log scale. The default is 
"y", indicating that only the y axis is to be plotted on 
the log scale. The alternative is "". 

yres Number of equal-width bins to split log(rho) or rho into. 
Defaults to 100. 

colfunc A function used to vary the colour contrast of the 
histogram. See below for more details. Defaults to 
function(x){x}. 

cols The palette from which to draw the colours. Defaults to 
the heat colour palette, with 100 gradations. Type 
?heat.colors for more information. 

 
Produces a fireplot of log(rho) or rho. A fireplot visualizes the 
posterior on log(rho) or rho along the sequence using a colour 
gradient. By default higher posterior density is represented by more 
intense colour (closer to white), and lower posterior density is 
represented by less intense colour (closer to red). The palette used 
can be changed using the option cols. For a smoother gradation of 
colours try cols=heat.colors(500). The contrast between high, mid and 
low density colours can be changed using the colfunc option. By 
default a linear function is used, but a useful alternative is 
colfunc=function(x){log(x+.001)}. Varying .001 can produce a wide 
range of colour contrasts. 
 
Examples fireplot.rho(list(run1,run2)) 
 fireplot.rho(list(run1,run2),colfunc=function(x){log(x+.0

01)}) 
 fireplot.rho(list(run1,run2),cols=rainbow(100)) 
 
positively.selected.sites(runs,...) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

... Further plotting options. Type ?plot or ?par for more 
information. 

 
Plots the posterior probability of positive selection (i.e. omega>1) 
for each site along the gene. The runs are combined. 
 
Examples positively.selected.sites(list(run1,run2)) 
 # For a thicker line: 
 positively.selected.sites(list(run1,run2),lwd=3) 
 



hist.omegaMap(runs,param,col="grey",freq=F,...) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

param Name of the parameter to plot in quotes. For a list of 
available parameters type names(run). 

col Colour of the histogram. Default is "grey". 
freq Whether the y axis should be probability density or 

count. The default is probability density. 
... Further plotting options. For more information type ?hist 

or ?par. 
 
Plots the posterior probability density for param as a histogram. The 
runs are combined. The likely values of param will be "mu", "kappa" 
and "phi". Marginal posterior densities for omega and rho at 
individual sites can be obtained by using, for example, "omega0", 
"rho115". The names of all possible parameters can be viewed by 
typing, for example, names(run1). 
 
Example hist.omegaMap(list(run1,run2),"mu") 
 hist.omegaMap(list(run1,run2),"mu",col="yellow") 
 
point.estimate(runs,param,log=TRUE) 
hpd.omegaMap(runs,param,log=TRUE,alpha=0.05) 
effective.sample.size(runs,param) 
runs Names of the objects containing the MCMC runs, in the 

form list(run1) for a single run, or list(run1,run2) for 
multiple runs. 

param Name of the parameter to plot in quotes. For a list of 
available parameters type names(run). 

log Specifies whether param is converted to a log scale 
before the point estimate or HPD interval is calculated. 
If so, the results are reported back on the original 
scale. Defaults to TRUE. Alternative is FALSE. 

alpha Specifies the width of the highest posterior density 
credible interval. The 100(1-alpha)% HPD interval is 
returned. By default, alpha=0.05. 

 
These functions produce summaries of the posterior probability 
density for the specified parameter. In particular, point.estimate() 
returns the mean of the posterior distribution for param, 
hpd.omegaMap() returns the 100(1-alpha)% HPD credible interval and 
effective.sample.size() returns the effective number of independent 
data points for the MCMC chains combined. 
 
Note that point.estimate() and hpd.omegaMap() by default operate on 
the logarithmic scale, then convert back to the original scale. The 
reason is that the parameters of omegaMap (mu, kappa, omega, rho and 
phi) are most naturally interpreted on a logarithmic scale. This 
feature can be disabled by specifying log=FALSE. 
 
Examples point.estimate(list(run1,run2),"mu") 
 point.estimate(list(run1,run2),"mu",log=FALSE) 
 hpd.omegaMap(list(run1,run2),"mu") 
 # Obtain a 99% HPD interval: 
 hpd.omegaMap(list(run1,run2),"mu",alpha=0.01) 
 effective.sample.size(list(run1,run2),"mu") 



6 Molecular rendering 
 
It is possible to use the output of omegaMap to colour three-dimensional 
representations of proteins encoded by structural genes. omegaMap doesn’t provide 
any details about the molecular structure – for that a pdb file is required. Find out 
whether the structure for your protein exists from the database at www.rcsb.org/pdb/. 
 
To render the image you will need additional software such as 
Protein Explorer: http://molvis.sdsc.edu/protexpl/frntdoor.htm 
MolScript : http://www.avatar.se/molscript/ 
 
For help using these programs you will need to consult their documentation or online 
tutorials. The RCSB protein data bank also has an online tutorial. 
 
The example that follows is designed to give you a few pointers. Firstly, decide how 
to colour the protein. The two obvious choices are 

1. Using the point estimate of � . 
2. Using the posterior probability of positive selection. 

Either of these can be obtained using the summarize program (see Automatic 
interpretation using summarize). 
 
Secondly, you need to align your FASTA sequence with the protein sequence in the 
pdb file. This can be done by hand; unfortunately it is a bit tedious. One reason you 
need to align them is because the pdb file will have a single amino acid sequence, 
whereas non-synonymous polymorphism will cause the sequences in your FASTA 
file to encode multiple amino acid sequences. Another reason is that indels that may 
exist in your sequences will have been removed from the pdb file. There is also a 
good chance that your FASTA sequences and the pdb amino acid sequence will begin 
and end at different codons. 
 
Thirdly, you need to edit the pdb file to enter the colouring. An example of the first 
dozen rows of a pdb file is shown below. In the pdb file, rows beginning ATOM have 
a ‘ temperature Factor’  column, and this is where the omegaMap colour can be 
entered. According to the most recent file format specifications, available from 
http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.html 
http://www.rcsb.org/pdb/static.do?p=file_formats/pdb/index.html 
the temperature factor is situated between the 61st and 66th characters on rows 
beginning ATOM. In the pdb example below, the column starts with the number 
0.05. You need to manually go through this file changing the temperature factors to 
the colouring. 
 
One difficulty with editing the pdb file is that columns are delimited by a fixed 
number of digits (this constrains the number of decimal places you can use), so they 
can be easily read into many spreadsheets, but e.g. Excel cannot save in this format. 
There are probably better ways to edit pdb files, but I used a text editor. The next 
difficulty is that you will want to colour every atom belonging to a particular amino 
acid the same colour. Fortunately the fourth (beginning ASP in the example) and fifth 
(beginning 1) columns in the pdb file record the amino acid residue that the atom 
belongs to. 



 
 
REMARK Produced by MODELLER: 11-Apr-02 14:28:25                                1 
REMARK MODELLER OBJECTIVE FUNCTION:      2361.4534                               
ATOM      1  N   ASP     1      56.806  19.282  19.867  1.00  0.05       1SG   2 
ATOM      2  CA  ASP     1      55.872  20.429  19.823  1.00  0.05       1SG   3 
ATOM      3  CB  ASP     1      54.637  20.095  18.963  1.00  0.05       1SG   4 
ATOM      4  CG  ASP     1      53.876  18.928  19.588  1.00  0.05       1SG   5 
ATOM      5  OD1 ASP     1      54.373  18.345  20.588  1.00  0.05       1SG   6 
ATOM      6  OD2 ASP     1      52.776  18.606  19.063  1.00  0.05       1SG   7 
ATOM      7  C   ASP     1      55.418  20.806  21.191  1.00  0.05       1SG   8 
ATOM      8  O   ASP     1      55.639  20.073  22.154  1.00  0.05       1SG   9 
ATOM      9  N   VAL     2      54.784  21.986  21.310  1.00  0.06       1SG  10 
ATOM     10  CA  VAL     2      54.311  22.412  22.590  1.00  0.06       1SG  11 

 
Having edited the pdb file, and having taken care not to corrupt it in the process(!) all 
that remains is to render the molecule and make sure that it is coloured according to 
the temperature factor. Protein Explorer, which is available for free (see URL above), 
provides user friendly clickable molecular rendering which allows you to rotate the 
protein and use various representations of the protein such as balls and sticks and 
ribbons. By right-clicking in the protein window it is simple to change how the 
molecular is coloured, and the options include, in additional to the temperature factor, 
colouring it from the N to the C terminus, according to amino acid type, and others. 
 
In Protein Explorer, once you have rotated the protein to your preferred view and 
coloured it appropriately, you simply copy the image and paste it into a graphics 
package. So what you see is what you get – which can be a bit grainy compared to 
others such as MolScript which can produce smoother, higher-resolution images. The 
following image was produced in Protein Explorer using the point estimate of omega 
to colour the protein, and the ribbon view. Because the FASTA file analysed with 
omegaMap contained sequences shorter than the amino acid sequence in the pdb file, 
I assigned a value of �  = 1 for the unanalysed sites at the N and C termini (coloured 
light blue in the figure). 
 

 
 
 



7 Key assumptions of the model 
 
omegaMap uses an approximation to an explicit population genetics model, the key 
assumptions of which are outlined here. 
 
1) The haplotypes constitute a random sample of the population 

a) As a result, it is important not to include each unique haplotype only once in 
the FASTA file, unless it was observed only once in the sample: if a particular 
haplotype was found x times there should be x copies of it in the FASTA file. 
Sequencing techniques that discard or distort information about the frequency 
of haplotypes are therefore problematic. 

b) To reduce the size of big datasets, haplotypes should be removed at random 
and with probability proportional to the frequency of the haplotype. Reducing 
the dataset size by representing each unique haplotype exactly once will 
violate the assumption of random sampling. 

2) The population has a constant size 
3) Mating (or horizontal gene transfer) in the population is random 

a) A consequence of this assumption is that for diploids, both chromosomes can 
be sampled without violating the first assumption. 

b) Deep structure in the population is problematic. In particular, sequences from 
different species that cannot conceivably mate at random should not be 
analysed together. 

4) All individuals in the population have the same reproductive potential 
5) The population size is large 

a) The sample size is supposed to be much smaller than the effective population 
size. Sample sizes that approach the effective population size will violate this 
assumption. 

 
Violating the above assumptions will have unknown effects. Further research may 
show that results differ in their sensitivity to the violation of different assumptions. 
Extending the model could allow certain violations of the current assumptions to be 
treated properly, such as the analysis of haplotypes from populations with deep 
structure, or incorporating known demographic history. 
 
 



8 Configuration file options 
 
These options are not case-sensitive. Those marked Required must always be included 
in the initialization file or at the command line. Those marked Optional do not have to 
be, and those marked Required* must be included in some situations. Any option 
specified in the initialization file can be overridden at the command line, by prefixing 
the option with a hyphen and using the following examples of syntax. 
 
omegaMap genes.ini 
omegaMap genes.ini –outfile different.txt 
omegaMap genes.ini –muprior uniform –muparam 0 20 
 
In addition to overriding options specified in the initialization file, the command line 
can be used to specify options that aren’ t specified at all in the initialization file. 
 
Reading in the sequence data 
 
FASTA 

Required 
Filename (and path) of the FASTA file containing the RNA/DNA 
sequence data 

  
 
Fixed variables for the model 
 
WARNING: while pi can be estimated from the data, this is not recommended. Should 
any codons not be represented in the dataset, that codon is excluded from the mutation 
model. 
 
pi 

Optional 
List of the equilibrium frequencies of the 61 codon positions. 
Should sum to 1. Default is to estimate these from the data. 

  
piIndel 

Optional 
Equilibrium frequency of indels relative to codons at sites 
segregating for indels. Must be between 0 and 1. Default is to 
estimate these from the data. 

  
norders 

Required 
Number of orderings in the PAC likelihood. 

  
orders 

Optional 
List of the orderings, of length L*norders (where L is the 
sequence length in codons). If omitted then chosen at random. 

  
 
Output options 
 
WARNING: one of outfile or datafile must be specified. 
 
niter 

Required 
Number of iterations to run the MCMC. 

  
outfile Filename for text file to output the variables in a tab-separated 



Optional value file at the chosen thinning interval. Default is no output. 
  
thinning 

Required* 
Thinning interval for the text file. Must be a positive integer. 
Required if outfile is specified. 

  
datafile 

Optional 
Filename for data file containing the entire encoded MCMC 
output that can be reanalyzed later. Default is no output. 

  
coutput 

Optional 
true or false 
If true then a counter is sent to the standard output (usually the 
screen).  Set to false to turn the counter off, desirable for example 
if the standard output is piped to a file. Defaults to true. 

overwrite 

Optional 
true or false 
If true then outfile and/or datafile will be overwritten even if 
they already exist. Defaults to false. 

  

Specifying the priors 
 
For each of the parameters mu, kappa, omega, rho and indel, the prior distribution and 
the parameters for that distribution must be specified. For example, the prior for mu is 
specified by… 
 
muPrior 

Required 
fixed, uniform, improper_uniform, exponential, gamma 

or exponential_ratio. 
Distribution to use for the prior on mu. 

  
muParam 

Required* 
Parameter(s) for the prior distribution on mu. Required unless the 
distribution takes no parameters. 

  
The available distributions and their parameterisations are detailed here. 
 
fixed Parameters: the value to fix the variable at. For mu and kappa this 

should be a single value. For omega it should be a single value if 
omega_model is constant, or a list of length L if omega_model is 
independent. For rho it should be a single value if rho_model is 
constant, or a list of length L–1 if rho_model is independent. 
WARNING: specifying a fixed prior, for mu for instance, 
overrides the muStart option. 

  
exponential 

 

Parameter: the rate 
�
 

( ) ( )xxf λλ −= exp  for 0,0 >≥ λx  

which has mean λ1  and variance 21 λ . 
 
 
For example, 2=λ (red), 2

1=λ (blue). 
  
exponential_ratio No parameters. 
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which has its median at 1=x , but undefined mean and variance. 
This distribution is appropriate for modelling the ratio of two 
exponential variates with the same rate. 

  
gamma 

 

Parameters: the shape parameter a, the scale parameter b 
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xf
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 for 0,0,0 >>≥ bax  

which has mean ab  and variance 2ab . 
 
For example, 1=a (red), 2=a (yellow), 3=a (blue). 1=b  in all. 

  
improper_inverse No parameters. 

( ) xxf /1∝  for 0>x  
This is an improper distribution because there is no constant of 
proportionality that can satisfy the above. 
WARNING: reversible-jump MCMC requires proper priors, so 
improper_inverse cannot be used for �  when omega_model is 
set to variable nor for �  when rho_model is set to variable. 

  
improper_uniform No parameters. 

( ) 1∝xf  for 0≥x  
This is an improper distribution because there is no constant of 
proportionality that can satisfy the above. 
WARNING: reversible-jump MCMC requires proper priors, so 
improper_uniform cannot be used for �  when omega_model is 
set to variable nor for �  when rho_model is set to variable. 

  
inverse 

 

Parameters: the range a, b 

( ) ( )abx
xf

lnln

1

−
=  for bxa ≤≤  

Note that a and b must be positive (greater than zero). The inverse 
distribution is a uniform distribution on the logarithmic scale. 
 
For example, 5,5.0 == ba . 

  
log_normal 

 

Parameters: the mean m and standard deviation �  of the 
transformed variate xy ln= . 

( ) ( ) ���
����� −−=

2

2

2
exp

2

1

σπσ
mx

x
xf  

Use this distribution for parameters for which, on the logarithmic 
scale, you wish to fit a normal prior distribution. The distribution 
has mean ( )2exp 2σ+m  and variance ( )m22exp 2 +σ  

( )m2exp 2 +− σ . 
 



For example, 0.17.2ln,0.01ln ==== ba  (red), 
1.01.1ln,693.05ln ==−== ba  (yellow). 

  
uniform 

 

Parameters: the range a, b 

( ) ��
�

�
�

<<
−=

otherwise0

 if
1

bxa
abxf  

 
For example, 6,0 == ba . 

 
For both omega and rho, you must specify how the parameter varies along the gene 
sequence. If the variable model is used, the parameters for the blocks must be 
specified. 
WARNING: the shorter oBlock and rBlock, the longer the MCMC will take to 
converge. The extreme case of this is for independent parameters for each site. 
 
omega_model 

Required 
constant or variable or independent 
Specifies whether a single omega is to be estimated for the entire 
sequence, or a variable omega. 

  
rho_model 

Required 
constant or variable or independent 
Specifies whether a single rho is to be estimated for the entire 
sequence, or a variable rho. 

  
oBlock 

Required* 
Mean length (in codons) of an omega block. Must be greater than 
1. Required if variable omega_model is specified. 

  
rBlock 

Required* 
Mean length (in codons) of a rho block. Must be greater than 1. 
Required if variable rho_model is specified. 

  
 
Controlling the MCMC chain 
 
seed 

Optional 
A seed for the random number generator. If omitted then chosen 
using the system clock. Must be a negative integer. 

  
 
These commands allow the initial state of the MCMC to be controlled. If omitted, the 
initial values for the parameters are drawn from their prior distributions. For improper 
priors, it is necessary to manually specify the initial values using these options. 
WARNING: these options are overridden by specifying fixed in the prior. 
 
muStart 

Required* 
Sets the intial value of mu. Correspondly for kappa and indel. 

  
omegaStart 

Required* 
Sets the intial value of omega. If omega_model is constant then 
provide a single value. If omega_model is independent then 
provide a list of length L. 

  



rhoStart 

Required* 
Sets the intial value of rho. If rho_model is constant then 
provide a single value. If rho_model is independent then 
provide a list of length L– 1. 

  
 
The following commands provide the relative weight of each MCMC move. All or 
none should be specified, and they should sum to one. If not they will be 
automatically re-normalised. 
WARNING: convergence of the MCMC chain is sensitive to these commands. 
 
change_oBlock 
Default 0.1 

Change value of omega for the sequence (constant model), a 
single block (variable model) or a single site (independent 
model). 

change_rBlock 
Default 0.1 

Change value of rho for the sequence (constant model), a single 
block (variable model) or a single site (independent model). 

change_mu 
Default 0.0667 

Change value of mu for the sequence. 

change_kappa 
Default 0.0667 

Change value of kappa for the sequence. 

change_indel 
Default 0.0667 

Change value of indel for the sequence. 

extend_oBlock  
Default 0.1 

Extend an omega block 5 �  or 3 �  

splitMerge_oBlock  

Default 0.1 
Split/merge omega blocks 

extend_rBlock  
Default 0.1 

Extend a rho block 5 �  or 3 �  

splitMerge_rBlock  

Default 0.1 
Split/merge rho blocks 

 
 


