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Chapter 1 

Epidemiology of Neisseria meningitidis 

 

Neisseria meningitidis, also known as the meningococcus, is the bacterium 

responsible for meningococcal septicaemia and meningitis in humans. N. meningitidis 

has a global distribution, and the diseases it causes are fatal in around 11% of cases in 

the West (Goldacre et al. 2003). Meningococcal disease primarily affects children 

under 5 years of age, and is often characterized by a rapid deterioration from first 

symptoms to death. Cases of meningococcal disease tend to occur at a rate of about 1 

case per 100,000 people throughout the world (Achtman 1995), but reach levels in 

excess of 500 per 100,000 people in severe epidemics that occur with some regularity 

in the Sahel, commonly known as the African meningitis belt, and China (Caugant 

2001). 

 

Meningococcal disease is principally controlled by mass vaccination of target groups. 

Population genetic studies can inform control and prevention strategies in two 

 

Figure 1 Neisseria meningitidis is a diplococcus ordinarily resident in the nasopharynx. Source: 

scanning electronic micrograph, Sanger Centre. 
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important ways. Firstly, patterns of genetic diversity across multiple loci provide an, 

albeit corrupted, account of the epidemiological history and structure of the pathogen 

population. Secondly, patterns of genetic diversity can reveal the selection pressures 

exerted on meningococci at specific loci; of particular interest is natural selection 

imposed by interaction with the immune system. The role of population genetics is to 

model the epidemiological processes that give rise to the observed genetic diversity 

from an evolutionary perspective, in order to better understand those processes. In 

addition to informing control and prevention strategies, pathogens such as N. 

meningitidis provide interesting case studies in the study of evolution by virtue of 

their high levels of genetic diversity, short generation times and ongoing co-

evolutionary arms race with the host immune system. 

 

In this chapter I will begin by reviewing the field, and justifying the use of population 

genetics models, and the coalescent in particular, in modelling microparasites such as 

N. meningitidis. In Chapter 2 I use a modification to approximate Bayesian 

computation to assess the fit of the standard neutral model to populations of carried 

meningococci. The source of genetic structuring is investigated in Chapter 3, first by 

fitting the neutral microepidemic model using approximate Bayesian computation, 

and then with AMOVA and Mantel tests to quantify the differentiation between 

carriage and disease populations, and the extent to which geography and host age 

structure carriage populations. Together these results suggest ways in which the 

standard neutral model might be revised to provide a better fit to observed patterns of 

genetic diversity. 
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The role of natural selection in shaping meningococcal diversity is investigated in 

Chapter 4 using a novel method that utilises an approximation to the coalescent and 

reversible-jump Markov chain Monte Carlo to detect sites under selection in the 

presence of recombination. Having performed a simulation study to assess the 

statistical properties of the method, in Chapter 5 I apply it to the porB antigen locus 

and seven housekeeping loci in N. meningitidis. The differences in selection pressures 

experienced by these different types of loci reflect the function and exposure to the 

host immune system of their gene products. Finally in Chapter 6 I discuss the results 

and limitations of the methods covered in this thesis, and consider the future direction 

of population genetic approaches to understanding infectious disease. 

 

This chapter is organised into four sections. I begin in section 1.1 with an overview of 

the biology of N. meningitidis, including the pathology, epidemiology of carriage and 

disease populations, methods used for meningococcal typing and public health 

strategies used in control and prevention. Next in section 1.2 I review how the 

understanding of meningococcal population biology has changed over time as typing 

technologies have developed and as larger-scale studies have been undertaken. Some 

mathematical models that have been used to describe meningococcal populations are 

discussed. In section 1.3 I discuss the application of population genetics techniques to 

infectious disease in general, and how the population genetics approach has helped 

understand pathogen evolution. Finally in section 1.4 I argue that the coalescent is the 

natural starting point for population genetic analysis of N. meningitidis, by showing 

how, in a simple population model of meningococcal infection in a host population, 

the dynamics of prevalence are described by a familiar SIRS epidemiological model 
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and the genealogy of a sample of the pathogen population is described by the 

coalescent. 

 

1.1 Overview of Neisseria meningitidis 

1.1.1 Epidemiology 

Despite its notorious pathogenicity, N. meningitidis is a natural human commensal, 

normally residing in the nasopharynx (Figure 1). Whereas incidence of disease is of 

the order of one case per 100,000 people endemically, carriage of disease is very 

much more common, typically one carrier per 10 people. The meningococcus has 

several adaptations to life in the nasopharynx, including pili for cytoadhesion to the 

nasopharyngeal epithelium and human transferrin and lactoferrin binding receptors 

for sequestering iron (Cartwright 1995). Disease occurs only when the 

meningococcus crosses the nasopharyngeal epithelium and enters the blood stream.  

 

1.1.1.1 Pathology 

When meningococci ordinarily commensal to the nasopharyngeal epithelium invade 

the blood stream they can cause septicaemia (blood poisoning) and, if the bacteria 

cross the blood-brain barrier, meningitis, an inflammation of the brain lining 

(meninges). When treated, meningococcal disease has a fatality rate of 11% (Goldacre 

et al. 2003). Meningitis alone has a fatality rate of 5%; most deaths from 

meningococcal disease are caused by septicaemia. Patients presenting with 

septicaemia but not meningitis have a 20% mortality rate, but this is closer to 50% if 

the patient has already gone into shock. Of those infected with meningococci, 15% 
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suffer meningitis alone, 30% septicaemia alone and 50% a combination (Meningitis 

Research Foundation 2005). The remainder suffer milder symptoms. 

 

Meningitis can progress rapidly from first symptoms to death. The onset of meningitis 

is associated with sore throat, headache, drowsiness, fever, irritability and neck 

stiffness (Figure 2). Bacterial toxins in the brain cause inflammation and can result in 

coma. Septicaemia is manifest externally as a haemorrhagic skin rash (Figure 3) that 

does not fade when pressed, by a glass tumbler for example. For 35% of patients this 

septicaemia is fulminating, including disseminated coagulation in blood vessels, 

flooding of the circulatory system with bacterial endotoxins, shock and kidney failure. 

In the most severe cases bleeding can occur in the brain and adrenal glands (Mims 

1998). 

 

N. meningitis is a gram negative bacterium, and treatment proceeds by immediate 

administration of the antibiotic penicillin, ampicillin or chloramphenicol. In the 

 

Figure 2 Symptoms of meningococcal meningitis. Source: Meningitis Research Foundation (2005).  
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absence of treatment, the fatality rate for meningococcal disease approaches 100%. 

Following the acute phase of the infection the patient is treated with rifampin to clear 

nasopharyngeal carriage, and close contacts such as family are treated 

prophylactically with rifampin (Mims 1998). After-effects are rare, but include 

hearing damage, nerve palsies and epilepsy. 

 

1.1.1.2 Epidemiology of meningococcal disease 

Prevalence of meningococcal disease varies globally, seasonally, and with age of host. 

To some extent meningococcal disease epidemiology obeys national boundaries 

meaning that adjacent countries can experience quite different meningococcal 

epidemiology, yet historically meningococcal disease has been characterized by a 

 

Figure 3 Symptoms of meningococcal septicaemia. Source: Meningitis Research Foundation 

(2005). 
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number of successive sweeps of global pandemics affecting several countries at any 

one time. 

 

The meningitis belt of sub-Saharan Africa suffers semi-regular outbreaks of 

meningococcal disease with a period of some 8-12 years and attack rates of the order 

of 500 cases per 100,000 people (Lapeyssonie 1963; Schwartz et al. 1987). Outbreaks 

in developed countries have been rare since large-scale mobilisation of troops during 

the Second World War caused meningococcal pandemics in Europe and North 

America. During the 1970s an outbreak emerged in Norway with attack rates of the 

order of 10 cases per 100,000 people, which subsequently spread across Europe 

including the United Kingdom and reached countries as far away as Cuba, Chile and 

Brazil. In 1987 a virulent meningococcal outbreak during the annual Haj pilgrimage 

to Mecca was spread globally by pilgrims returning to their home countries (Schwartz 

et al. 1987). Meningococcal disease in developed countries is generally characterized 

by small sporadic outbreaks, with a background attack rate of 1 case per 100,000 

people (Achtman 1995). 

 

Disease outbreaks are sensitive to seasonal effects, but the exact relationship varies 

globally. In the African meningitis belt epidemics coincide abruptly with the 

harmattan (dry season). During this time climatological features such as humidity, 

airborne dust, rainfall and wind patterns undergo marked changes, and these in turn 

lead to changes in human behaviour. The harmattan ends with the arrival of the rains. 

By contrast in Europe and North America disease rates peak during winter months 

and steadily decline to low levels by autumn (Cartwright 1995). Many other bacterial 

and viral infections show a similar seasonality in incidence. 
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Age is an important factor in rates of incidence and recovery from meningococcal 

disease. Meningococcal disease primarily affects children under 5 years of age: 

incidence peaks in infants aged about 6 months and subsequently declines steadily 

(Cartwright 1995). Figure 4 (left) shows that in the United States, the rate of 

meningococcal disease in children halves by the age of 1 and halves again by the age 

of 4 (Centers for Disease Control and Prevention 2000). By comparison, Figure 4 

(right) shows that the fatality rate is considerably worse in young children (National 

Office of Statistics 2002), assuming that the incidence rates are similar in the U.K. 

and U.S. 

 

1.1.1.3 Epidemiology of carriage 

Not only is meningococcal carriage vastly more prevalent than disease, but patterns of 

carriage differ markedly to patterns of disease. The carriage rate in the United States 

and Europe is about 10% (Broome et al. 1986; Caugant et al. 1994), some 10,000 

times the rate of disease. However, institutions which house closed or partially-closed 
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Figure 4 Left: rate of incidence of meningococcal disease with age in the United States, 2000. 

Right: fatality rate of meningococcal disease with age in the United Kingdom, 2002. Sources: 

Centers for Disease Control and Prevention (2000), National Office of Statistics (2002). 
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communities traditionally exhibit elevated carriage rates. Military training camps, 

boarding schools and prisons commonly have carriage rates in excess of 50% 

(Cartwright 1995). Patterns of carriage differ from patterns of disease in their 

geographic distribution, sensitivity to seasonal effects and age profile of hosts. 

 

Despite the dramatic seasonality of disease incidence in Asia and the African 

meningitis belt, meningococcal carriages rates are relatively insensitive to seasonal 

fluctuations. A distinct lack of seasonal variability has been reported in studies in 

Nigeria and India (Blakebrough et al. 1982; Ichhpujani et al. 1990). Similarly, 

carriage rates in temperate regions do not appear to mirror the seasonality of 

incidence rates according to studies in Belgium and the United States (De Wals et al. 

1983; Aycock and Mueller 1950). Nevertheless, carriage rates are known to react to 

passing epidemics, with up to 70% carriage during severe disease outbreaks 

(Cartwright 1995). 
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Figure 5 Percentage carriage with age in Gloucestershire, United Kingdom, 1986. Source: 

Cartwright et al. (1987). 
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The age distribution of meningococcal carriage differs substantially to the age 

distribution of infected hosts. Figure 5 shows the results of a study in Gloucestershire, 

United Kingdom (Cartwright et al. 1987). Carriage rates are lowest in infants and 

young children, and peak at about 25% in late teenage years and early twenties. This 

contrasts firstly with the observation that mortality is gravest in children under 5, and 

secondly with N. lactamica carriage rates, which peak in infancy and then steadily 

decline (Bennett et al. 2005). 

 

The contrast in epidemiology between meningococcal carriage and disease raises 

several questions, in particular: Can carriage isolates cause disease or are disease-

causing isolates genetically distinct? Are disease-causing isolates a subset of carriage 

isolates or do they circulate independently? Can disease-causing isolates persist long-

term or do they emerge recurrently from carriage isolates? Do the incongruent age 

profiles of carriers and cases reflect different susceptibilities or different circulating 

forms? In order to address these problems it is necessary to genetically characterize 

the meningococci, and that is the role of typing. 

 

1.1.2 Typing 

In general, typing is useful if there is any association between genotype and a 

phenotype of interest such as propensity to cause disease or susceptibility to particular 

drugs. If closely-related groups of meningococci share epidemiological or 

pathological features in common, then typing provides information about the bacteria 

that may help in tracking and controlling the spread of disease-causing and non-

disease-causing isolates and prescribing appropriate treatment to infected patients. 

Typing systems determine the genotype using a phenotypic marker or directly using 
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sequencing. Three kinds of typing have been used widely in the study of N. 

meningitidis: immunological typing, electrophoretic typing and sequence typing. 

Immunological typing and electrophoretic typing use phenotypic markers. In these 

typing schemes it is not necessary to know the underlying genotype, but there must be 

a strong correspondence between variants of the marker and variants of the underlying 

genetic locus to make typing useful. However, as DNA sequencing technology has 

developed and become less costly, direct sequencing has become more important for 

typing. DNA sequencing has also allowed the genotypes underlying phenotypic 

typing schemes to be determined. 

 

1.1.2.1 Immunological typing 

Traditionally meningococci have been differentiated according to their immunogenic 

properties, which are determined primarily by the capsular polysaccharide and 

proteins that span the phospholipid outer membrane. Between the outer membrane 

and the cytoplasmic membrane lies a peptoglycan layer. Shedding of outer membrane 

vesicles known as blebbing plays an important role in immune evasion. Blebs contain 

outer membrane proteins (OMPs) and lipopolysaccharide that are highly 

immunogenic. Blebs bind antibodies that might otherwise bind to the whole 

Table 1 Meningococcal outer membrane proteins 

OMP Class Protein Function Typing level 

1 PorA Porin Serosubtyping 

2 and 3 PorB Porin Serotyping 

4 Rmp Reduction modifiable protein Not used 

5 Opa/Opc Opacity protein Not used 
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bacterium. Five principal classes of OMP have been identified (Table 1) and together 

with the capsular polysaccharide, these form the basis of immunological typing 

(Poolman et al. 1995). 

 

Serogroup is the primary immunological type and is determined by the polysaccharide 

capsule. There are thirteen recognised serogroups (A, B, C, 29-E, H, I, K, L, W-135, 

X, Y, Z). Serogroups A, B and C are responsible for 90% of invasive disease; the 

remainder is accounted for chiefly by serogroups Y and W135 (Poolman et al. 1995). 

The capsule is a pre-requisite for invasive disease; many meningococci do not express 

a capsule and cannot be typed serologically. The capsule-synthesis (cps) cluster is the 

genetic determinant of meningococcal serogroup, and comprises five regions A-E. 

The capsules of serogroups B, C, Y and W135 all contain sialic acid, and are variants 

of the siaD locus. Serogroup A capsules do not contain sialic acid but do contain 

mannosaminephosphate, encoded at the myn locus. Both siaD and myn are situated in 

region A of cps. Meningococci that are serologically ungroupable occur either 

because mutation leads to the capsule not being expressed, or because the capsule-

encoding loci are lacking (Vogel et al. 2001; Claus et al. 2002). In the former case, 

these meningococci can still be characterized at the cps cluster using sequencing 

(Claus et al. 2002). 

 

Serotype is determined by variants of the PorB OMP, a porin encoded at the porB 

locus, and serosubtype by variants of the PorA OMP, another highly-expressed porin 

encoded at the porA locus. PorB and PorA are subcapsular proteins that allow the 

passage of ions across the phospholipid membrane. PorA and PorB show cation and 

anion selectivity respectively (Poolman et al. 1995). The PorA protein has two 
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hypervariable regions, VR1 and VR2, and combinations of variants at each region are 

possible. The full typing classification is denoted, for example, B:4:P1.16,7, meaning 

serogroup B, serotype 4, serosubtype 1 with VR1 16 and VR2 7. 

 

1.1.2.2 Electrophoretic typing 

Gel electrophoresis has a higher resolution than immunological typing because amino 

acid variants that are immunologically equivalent can be distinguished. Using gel 

electrophoresis, non-synonymous nucleotide variation at a locus can be detected and 

the frequencies of the different variants estimated, regardless of the immunogenic 

properties of those variants. Gel electrophoresis is generally applied to water-soluble 

cellular enzymes and works because amino acid variants have different 

electrophoretic properties. Amino acid polymorphism causes variation in the net 

electrostatic charge of the enzymes because different amino acids have different 

charges. This variation is detected by differential rates of migration across the gel 

when a current is applied. 

 

Variants identified by gel electrophoresis are known as allozymes (i.e. allelomorphs, 

or variants, of the same enzyme), or electromorphs. Allozyme refers to variants of a 

particular orthologous locus, whereas the term isozyme can refer to paralogous 

variants. As a result of the inability of gel electrophoresis to detect synonymous 

nucleotide polymorphism, a particular allozyme may represent multiple nucleotide 

alleles. However, not all non-synonymous variants are distinguishable because some 

have equivalent electrophoretic mobility. Studies suggest that gel electrophoresis 

detects around 80-90% of non-synonymous variation (Selander et al. 1986). 
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Figure 6 illustrates the results of gel electrophoresis on three enzymes of Escherichia 

coli. The columns correspond to bacterial isolates and the vertical height of the band 

reveals variation in electrophoretic mobility, corresponding to amino acid 

polymorphism. Results from several loci can be combined to give information about 

the frequencies of multilocus allelic combinations. This is the basis of the technique 

known as multilocus enzyme electrophoresis (MLEE), which has been widely applied 

to bacterial populations (Selander et al. 1986). A moderate number of loci, usually 

between 10 and 30, are usually analysed with MLEE. Combining loci in this way is 

useful because (i) it increases the information content that is limited by diversity at 

any one locus and (ii) highlights any differences between epidemiological processes 

influencing different loci. Each electromorph (allozyme) at a locus is given an 

arbitrary label, usually a number reflecting the order in which the electromorph was 

first discovered. Each combination of electromorph numbers across loci, the 

multilocus profile, is also designated by a number, and this is referred to as the 

electrophoretic type (ET). The number of observed ETs will typically be much fewer 

 

Figure 6 Gel illustrating electrophoresis of three enzymes of Escherichia coli. The arrow indicates 

the direction of migration of the enzymes across the gel. Source: Selander et al. (1986). 
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than the sample size of the isolate collection, even when the sample size is much 

smaller than the number of possible ETs. 

 

One difficulty with MLEE is that the nomenclature for labelling electromorphs and, 

hence, ETs is not readily portable between laboratories in the sense that gel 

electrophoresis gives only relative electrophoretic mobility. The relative 

electrophoretic mobility cannot be reliably converted into an absolute measurement. 

Therefore comparing results between laboratories requires standards to be shared 

between laboratories and included in every electrophoresis. 

 

1.1.2.3 Sequence typing 

For genetic characterisation the highest level of resolution is the nucleotide sequence 

itself. Sequence typing is able to distinguish between alleles that differ only by 

synonymous nucleotide substitutions, which would be invisible to immunological and 

electrophoretic typing, and allows non-coding loci to be typed. Multilocus sequence 

typing (MLST; Maiden et al. 1998) has several advantages over MLEE for 

epidemiological surveillance (Urwin and Maiden 2003). Whereas it has made MLEE 

redundant, MLST coexists with immunological typing, partly as a result of the loci 

chosen as the standard for MLST. 
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MLST was pioneered in N. meningitidis, but its use is now widespread in many other 

bacterial species. In N. meningitidis the MLST protocol consists of obtaining short 

nucleotide sequence fragments, about 450 base pairs (bp) in length, in seven loci 

distributed about the 2.2 megabase (Mb) genome (Parkhill et al. 2000), as shown in 

Figure 7. Seven housekeeping genes were chosen out of twelve proposed genes to 

meet certain criteria, based on assessing those criteria in a collection of 107 isolates 

assembled to represent the global diversity observed in carriage and disease samples 

to date (Maiden et al. 1998). 

 

abcZ adk

aroE

fumC

gdh

pdhC

pgm

0 origin

 

Figure 7 Locations of the seven housekeeping loci in the N. meningitidis Z2491 genome (Parkhill 

et al. 2000) that are used for multilocus sequence typing. The origin of replication is marked 

(origin) and the reference point for nucleotide positions (0). 
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Those genes were required to have intermediate levels of genetic diversity to facilitate 

typing; the level of diversity had to meet the desired balance of sensitivity and 

specificity. Genes were excluded that were thought to be unusually influenced by 

natural selection or recombination. That reinforced the requirement for intermediate 

levels of diversity, and suggested the use of housekeeping loci (Urwin and Maiden 

2003). The function of the seven MLST genes is summarised in Table 2. Congruence 

between analyses of genetic clustering based on MLST and MLEE was also taken 

into account (Maiden et al. 1998; see later for more details). The fragment length of 

~450bp results from the length of sequence that could practicably be determined in 

the sequence trace using a single gel electrophoresis in 1996 (Urwin and Maiden 

2003). 

 

Having obtained the nucleotide sequences, each allele can be assigned an arbitrary 

label which is a number that roughly reflects the order in which the allele was 

discovered. This allele number is analogous to the number assigned to electromorphs 

Table 2 Function of the seven loci used in MLST in N. meningitidis 

Locus Function 

abcZ Putative ABC transporter 

adk Adenylate kinase 

aroE Shikimate dehydrogenase 

fumC Fumarate hydratase 

gdh Glucose-6-phosphate dehydrogenase 

pdhC Pyruvate dehydrogenase subunit C 

pgm Phosphoglucomutase 
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during MLEE. Each combination of allele numbers observed is known as the allelic 

profile, and is assigned an arbitrary label known as the sequence type (ST). This label, 

which is actually a number, is analogous to the ET obtained by MLEE. 

 

The results of MLST are more easily shared, in contrast to the results of MLEE 

typing. The nucleotide sequences can be stored digitally, usually as text files on a 

computer, and sent instantly to other laboratories using e-mail. As a result it is 

straightforward to verify that the nomenclature used to assign allele numbers and STs 

is consistent from laboratory to laboratory. There is a central repository for N. 

meningitidis MLST data (http://neisseria.org/mlst/) which consists of two databases 

(Jolley et al. 2004). The profiles database contains all deposited nucleotide sequences, 

allelic profiles and sequence types, and the PubMLST database contains isolate-

specific information. The PubMLST database can query the profiles database to 

obtain the nucleotide sequences for specific isolates, and contains additional 

information such as the study, country of origin, disease status of the carrier and 

serogroup. Whereas the profiles database contains only one complete nucleotide 

sequence of every allele identified to date, many of the entries in the PubMLST 

database will have the same allelic profile, and may have been sampled in the same, 

or different, studies. 

 

1.1.3 Control and prevention 

Strategies for prevention, or prophylaxis, and control are given different priority 

based on disease prevalence, economic costs and economic resources, all of which 

vary from country to country. While antibiotics are used to treat infected individuals 

and their close contacts (see section 1.1.1.1), control and prevention strategies make 
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use of vaccines for protecting as-yet uninfected members of the local population in 

the case of outbreak control, or the population at large in the case of prevention. 

Principally for economic reasons, vaccination of the population at large, if undertaken 

at all, is targeted at particular risk groups (see section 1.1.1.3), for example children, 

military recruits and the immunocompromised. 

 

1.1.3.1 Polysaccharide vaccines 

Bivalent (A, C) and tetravalent (A, C, Y, W-135) polysaccharide vaccines exist for 

meningococcal disease that contain the serogroup-specific capsular polysaccharide 

molecule. The bivalent vaccine was developed first, and extended because of 

significant disease caused by the other serogroups (Frasch 1995). In older children 

and adults, the efficacy of the serogroup A and C polysaccharides have been 

estimated to be 85-90% in clinical trials and epidemiological use, with a duration of 

protection of 5-10 years (Rosenstein et al. 1998). The polysaccharide vaccines are 

licensed for use in Europe and North America, but are not widely used because they 

do not induce strong or lasting immunological memory in the highest risk group, 

children under 2 years of age (Raghunathan et al. 2004). No polysaccharide vaccine 

for serogroup B meningococcal disease has been developed because of the low 

immunogenicity of the serogroup B capsular polysaccharide. This is thought to be 

owing to its close homology to a component of the human extracellular matrix 

(N-CAM). 

 

The efficacy of serogroup Y and W-135 polysaccharide vaccines has not been 

investigated, but none of the polysaccharide vaccines substantially reduces 

meningococcal carriage rates, and as a result, does not induce herd immunity. 
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Repeated immunization has also been shown to result in immune hyporesponsiveness, 

although the clinical relevance of this is not well understood (Raghunathan et al. 

2004). As a result, meningococcal polysaccharide vaccines are not part of the routine 

immunization schedule in any country. They are used in Europe and North America to 

protect members of high risk groups including patients suffering from asplenia 

(absent or defective spleen function that predisposes patients to fulminant bacterial 

infections), complement deficiency, military recruits, laboratory workers exposed to 

N. meningitidis and travellers to hyperendemic or epidemic areas (Pollard et al. 2001). 

Currently polysaccharide vaccines, in combination with antibiotics depending on the 

scale of the outbreak, are part of strategies for managing outbreaks in the West (Stuart 

2001). 

 

1.1.3.2 Polysaccharide-protein conjugate vaccines 

The immunological shortcomings of polysaccharide vaccines are thought to result 

from the inability of the human T cell receptor to recognise the polysaccharide 

structure. Polysaccharide-protein conjugate vaccines work by binding the capsular 

polysaccharide to a protein carrier, which helps in T cell recruitment. This strategy 

has been successfully utilised in the Haemophilus influenzae type B vaccine (Hib; 

Heath 1998). To date, polysaccharide-protein conjugate vaccines have only been 

introduced in the United Kingdom, largely in response to concern over the rise in 

serogroup C meningococcal disease. The meningococcal serogroup C conjugate 

vaccine (MenC) was introduced into the routine immunization schedule in October 

1999, with immunizations at 2, 3 and 4 months of age. Simultaneously, a campaign to 

immunize all children and young adults from 5 months to 18 years was initiated to 

induce widespread immunity. As a result there was an 81% reduction in the number 
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of confirmed cases of invasive meningococcal disease and deaths fell from 67 in 1999 

to 5 in 2001. A 66% reduction in carriage in teenagers a year after vaccination has 

been documented, and substantial herd immunity was found in unvaccinated children 

who demonstrated a 67% reduction in carriage from 1998/1999 to 2001/2002. 

Potential problems such as capsule switching, in which the virulent strain undergoes 

recombination at the serogroup determining locus hence switching serogroup, and 

serogroup replacement, in which serogroup B disease might occupy the niche vacated 

by serogroup C disease, have not as yet presented themselves (Snape and Pollard 

2005). 

 

Other conjugate vaccines are under development, including a combined serogroup A 

and C vaccine (MenAC), trials of which were conducted in the United Kingdom and 

United States prior to the introduction of MenC in the U.K. (Snape and Pollard 2005). 

However, in North America the conjugate vaccine has only recently been licensed and 

a number of considerations suggest that it may not become part of the routine 

immunization schedule, including (i) the fact that polysaccharide vaccines are not 

currently used in routine immunization (ii) the probable absence of serogroup B from 

the vaccines (iii) the low prevalence of disease (iii) the cost of the vaccine and (iv) the 

crowding of the current immunization schedule (Pollard et al. 2001). It is likely that 

long-term, conjugate vaccines will replace polysaccharide vaccines in outbreak 

management (Stuart 2001). In Africa, where a lack of funding and vaccine research 

by pharmaceutical companies has led to the situation in which many countries that 

suffer from sporadic large scale epidemics do not have formal immunization 

strategies for preventing meningococcal outbreaks, the meningitis vaccine project 

(MVP), which is a collaboration between the World Health Organisation and the 
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Program for Applied Technology in Health, has been working on the development of 

a serogroup A conjugate vaccine (MenA). Clinical trials lasting for three years have 

begun, with licensure of the vaccine expected in 2008. The first use of the 

preventative MenA vaccine is anticipated to begin in 2009, with widespread 

vaccination initially targeted at high risk groups such as young children (Soriano-

Gabarró et al. 2004). 

 

1.1.3.3 Outer membrane protein vesicle vaccines 

The poor immunogenicity of the serogroup B capsular polysaccharide in particular is 

concerning because serogroup B meningococci are responsible for much of the 

endemic meningococcal disease worldwide, including Europe and North America. 

After the capsule, class 1 OMPs are the next most immunodominant meningococcal 

antigen, followed by OMP classes 2 and 3. Patients suffering from meningococcal 

disease present bactericidal antibodies directed against these sub-capsular cell surface 

antigens. Recent research into serogroup B (MenB) vaccines has therefore 

concentrated on the development of outer membrane protein vesicle (OMV) vaccines. 

 

There are several routes under investigation for OMV vaccine development. OMVs 

are naturally secreted from the meningococcus in the form of blebs, although they 

cannot be used in their native form. To prepare OMVs for a vaccine first requires the 

depletion of lipopolysaccharide (LPS), which is known to induce fever. Insoluble 

OMVs have been found to have poor immunogenicity, but combining the OMV with 

capsular polysaccharide makes the complex soluble and more efficacious. Similarly, 

adsorption of the vaccine on to aluminium hydroxide can increase the bactericidal 

response of the immune system. It is thought that vaccine efficacy might be further 
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improved by removal of class 4 OMPs that induce antibody blocking. A number of 

proteins expressed during pathogenesis are not expressed during natural growth, 

including iron regulated OMPs and heat-shock proteins, and could be important to a 

vaccine’s immunogenicity. OMPs can be isolated with relative ease, but their native 

conformation is not conserved upon removal from the phospholipid membrane. 

Packaging isolated OMPs in such a way as to retain their natural conformation offers 

an alternative route to OMV vaccine development (Frasch 1995). 

 

An important consideration in OMV vaccine development is the variety of serotypes 

defined by the subcapsular class 1 OMP. A given vaccine is raised against a particular 

serotype, so the long-term usefulness of that vaccine will depend both on the 

fluctuations in serotype prevalence and cross-protection between serotypes. There 

have been various trials of MenB OMV vaccines in Cuba, Norway, Chile, Brazil and 

Iceland (Sierra et al. 1991; Bjune et al. 1991; Zollinger et al. 1991; de Moraes et al. 

1992; Perkins et al. 1998). Of these, children are generally less well protected than 

adults. Overall efficacy was between 50-80%, but in some studies young children had 

no protection. The duration of protection was short-lived, falling after 8 months. New 

Zealand introduced an OMV vaccine in 2004 in response to a 14-year epidemic of 

B:4:P1.7b,4. The vaccine is not predicted to offer broad cross-protection, but was 

introduced on the basis of the specificity of the epidemic and the high levels of 

meningococcal disease (Sexton et al. 2004). It has been suggested that OMVs based 

on a combination of two antigenic loci might offer better efficacy and long-term 

effectiveness (Urwin et al. 2004). 
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1.2 Population biology of Neisseria meningitidis 

Genetic typing, in particular MLEE and MLST, has allowed patterns of genetic 

diversity in meningococcal populations to be quantified within and between 

geographic regions, sampling time points, and virulent and non-virulent isolates. 

Many studies of meningococcal disease and carriage have been undertaken which 

have shed light on the extent of diversity, structure of the population, frequency of 

recombination, influence of selection and overlap between disease-causing and 

carried strains. As larger-scale studies have been undertaken with MLST providing 

greater genetic discrimination, models of meningococcal evolution have been 

proposed and revised. I will discuss the progression of these studies, the techniques 

used in their analysis and the development of the evolutionary models used to explain 

them. 

 

1.2.1 The clonal complex 

Patterns of genetic diversity revealed by MLEE clearly demonstrate that the 

population structure of disease-causing N. meningitidis is organised into closely-

related, genetically homogeneous clusters, which can be visualised through UPGMA 

dendrograms (Sneath and Sokal 1973; Box 1). The genetic clusters tend to be strongly 

associated with particular serogroups; serogroup A clusters are known as subgroups, 

whereas in serogroup B and C meningococci the terms complex and cluster are used. 

These clusters, or complex of clones (Caugant et al. 1988), are routinely recovered 

from geographically disparate locations over periods of more than 10 years and 

exhibit strong linkage disequilibrium between loci, suggesting that populations of 
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meningococci are basically clonal in structure (Caugant et al. 1986; Caugant et al. 

1987). 

 

The use of MLEE has allowed the epidemiological spread of meningococci to be 

charted, the results of which have demonstrated that clonal complexes differ in their 

propensity to cause disease, rate of transmission and extent of global dissemination. 

Only a small number of clonal complexes are responsible for most of the disease 

worldwide (Caugant et al. 1988), the so-called hyper-virulent and hyper-invasive 

lineages. The clonal complex is thought to constitute the basic unit for epidemic 

spread (Achtman 1995). 

 

1.2.1.1 Serogroup A lineages 

Analysis of serogroup A N. meningitidis strains isolated from all major global 

epidemics in the period 1960-1990 divided the population into a small number of 

Box 1 – Building a UPGMA dendrogram 

 

Initially, there are as many clusters as there are genotypes, and the genetic distance 

dij between clusters i and j is defined as the proportion of loci at which isolates i and j 

have different alleles. The number of isolates in cluster i is defined initially to be 

ni = 1. 

1. Join the set of clusters C that have the smallest distance from one another. 

2. Call the new cluster i and define the genetic distance between i and each of the 

other clusters j, Cj ∉  as 
�

�

∈

∈=

Cc
c

Cc
cjc

ij n

dn
d  and let �

∈

=
Cc

ci nn . 

3. If there is more than one cluster left, return to step 1. 
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genetically homogeneous clusters, or subgroups (Wang et al. 1992). Eighty-four 

unique ETs were identified amongst the 290 isolates, and their genetic relationship 

can be visualised using a UPGMA dendrogram (Figure 8), with the subgroups colour-

coded. Genetic distance is defined as the proportion of loci at which a pair of ETs 

have different alleles (Selander et al. 1986). Figure 8 shows that the subgroups are 

genetically homogeneous. Within each subgroup there is a highly skewed frequency 

distribution of ETs, with one or two common ETs, and many rare ETs differing from 

one another at a small number of loci. The genetic distance between subgroups is 

generally much greater than the average distance within a subgroup. Serosubtypes are 

highly conserved within subgroups, with most ETs exhibiting a common PorA 

VR1/VR2 combination. 
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Figure 8 Genetic relationships, serosubtype patterns and relative abundance of 84 ETs in a global 

sample of disease-causing serogroup A meningococci. Adapted from: Wang et al. (1992). 
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Within serogroup A, subgroups I/II, III/VIII and IV-1/IV-2 are identified as hyper-

virulent lineages (Maiden et al. 1998), and these groups have been historically linked 

to specific epidemics worldwide (Achtman 1995): 

• Subgroup I was first isolated in the United Kingdom in 1941, although the 

subgroup may have originated elsewhere. Since the 1960s, subgroup I 

meningococcal disease has been responsible for epidemics affecting Niger, 

North Africa, the Mediterranean, native Americans living in Canada, homeless 

people in the United States, Nigeria, Rwanda and native peoples of New 

Zealand and Australia, over a time frame of thirty years. ETs belonging to 

subgroup I have also caused endemic disease globally. 

• Subgroup III isolates are first known from China in the 1960s, from where 

the cluster has spread causing outbreaks in Russia and Norway, then Finland 

and Brazil in the 1970s, Nepal and China in the 1980s and throughout 

continental Africa in the late 1980s and early 1990s. It was subgroup III that 

caused the Haj pilgrimage outbreak in 1987. An estimated 10% of the 1,000 

U.S. pilgrims to Mecca returned home carrying subgroup III meningococci. 

Thereafter sporadic cases were reported in the U.K., France, Israel and the 

Gambia. Subgroups III meningococci have also been responsible for endemic 

disease. 

• Subgroup IV-1 is, in contrast, almost entirely restricted to endemic disease in 

West Africa, persistently isolated over a period of 40 years. Except for two 

waves of subgroup I epidemics in the 1970s, subgroup IV-1 has been 

responsible for all epidemic disease isolated from West Africa in the same 

time period. 
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• Subgroup V bacteria are similarly geographically restricted. In their case no 

subgroup V strains have yet been isolated anywhere but in China, where they 

caused an outbreak in the 1970s.  

 

1.2.1.2 Serogroup B and C lineages 

Disease-causing isolates belonging to serogroups B and C are less uniform than 

serogroup A meningococci, and genetic clusters identified in one of these serogroups 

often contain some isolates expressing the other serogroup, as a result of 

recombination (Caugant et al. 1986). Sub-capsular antigenic expression is also less 

homogeneous (Caugant et al. 1987). Several groups important for disease exist within 

serogroups B and C that comprise highly genetically similar, low-frequency ETs 

clustered around a common ET (Achtman 1995): 

• ET-5 complex bacteria typically belong to serogroup B and are responsible 

for much endemic disease around the world. ET-5 complex meningococci 

have caused epidemics in Cuba, Chile, Brazil and New Zealand since 1970, 

prior to which their isolation was rare. As a result of their global endemicity, 

reconstructing the spread of particular epidemics has proved difficult. 

• A4 cluster isolates originated from South Africa and the U.S. in the late 1970s 

and early 1980s (Caugant et al. 1987), and were sampled contemporaneously 

in Canada and Europe. A4 cluster isolates typically express serogroup B but 

serogroup C isolates have been associated with increased disease incidence in 

Brazil since the 1990s. 

• ET-37 complex meningococci principally express serogroup C. Responsible 

for disease outbreaks amongst U.S. military recruits in the 1960s, ET-37 
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complex bacteria have been isolated from endemic infection globally, 

including North America, Europe, Africa and Asia. 

 

1.2.2 How clonal are bacteria? 

Problems exist for the idea that N. meningitidis has a basically clonal population 

structure. Firstly, recombination, which occurs by transformation of naked DNA in 

the meningococcus, is needed to explain the antigen switching observed not just in 

serogroup B and C complexes, but also serogroup A complexes and many carriage 

isolates (Caugant et al. 1987; Caugant et al. 1988). Secondly, in light of the fact that 

recombination is known to occur at some level, the use of dendrograms is 

questionable (Holmes et al. 1999). Thirdly, strong levels of linkage disequilibrium 

may occur in spite of recombination for several reasons (Maynard Smith et al. 1993): 

i. If the sample contains multiple populations, within which recombination is 

common, but between which it is rare, then there will be linkage 

disequilibrium. 

ii. Drift causes non-zero linkage disequilibrium even in the presence of random 

mating. 

iii. Epidemic population structure can lead to linkage disequilibrium. 

iv. Epistatic fitness interactions between loci can maintain linkage disequilibrium. 

 

Objection (i) applies to any analysis of datasets in which disease-causing isolates are 

overrepresented relative to carriage. If there exist different subpopulations of N. 

meningitidis that have different propensities to cause disease, and if disease-causing 

isolates are not a random sample of meningococcal isolates at large, then the problem 

will be exacerbated. Objection (ii) applies to any population of finite size. 



 

 31 

Determining what level of linkage disequilibrium (LD) is significantly different to 

zero is a statistical problem. Objections (iii) and (iv) are the subject of the epidemic 

clone model of Maynard Smith et al. (1993) and the strain theory model of Gupta et 

al. (1996) respectively. 

 

1.2.2.1 Epidemic clone model 

Maynard Smith et al. (1993) proposed an epidemic model of population structure in 

which a population undergoing frequent recombination may exhibit high linkage 

disequilibrium because of a recent epidemic during which a particular lineage 

 

Figure 9 Representation of population structures. A Strict clonality is represented by a bifurcating 

evolutionary tree. B Frequent recombination within reproductively isolated subpopulations is 

represented by a network within a bifurcating population tree. C Epidemic clone model in which 

recent clonal expansion (star-shaped tree) occurs against a backdrop of frequent recombination 

(network). D Alternative representation of the epidemic clone model in which cones represent 

recent clonal expansion superimposed on to a network of recombination. Source: Maynard Smith et 

al. (1993) and Maynard Smith et al. (2000). 



 

 32 

undergoes rapid clonal growth (Figure 9C,D). This they contrast against a model of 

strict clonality (Figure 9A), and a model of reproductively isolated populations each 

of which exhibits frequent recombination (Figure 9B). Maynard Smith et al. (1993) 

use a statistical test for recombination called the index of association (IA; Brown et al. 

1980; see Box 2), whose expectation is zero under the null hypothesis of frequent 

recombination.  

 

Analysis of a collection of over 600 serogroup A, B and C disease-causing isolates 

and carriage isolates (Caugant et al. 1987) yields 05.096.1 ±=AI , which is 

statistically significant from zero. Thus the null hypothesis of linkage equilibrium, 

and hence frequent recombination in a panmictic population, in these isolates is 

rejected, consistent with the observation of strong linkage between MLEE loci 

(Caugant et al. 1987). However, when each of the 37 ET clusters identified by 

Box 2 – Index of Association 

 

Suppose pij is the frequency of allele i at locus j, that �−= 21 ijj ph  is the probability 

that two isolates differ at locus j, and that K is the genetic distance between a pair of 

isolates, defined as the number of loci at which they differ. Then 

1−= EOA VVI  

is the index of association, where VO is the observed variance in K and 

( )� −= jjE hhV 1  is the expectation of VO under the null hypothesis of linkage 

equilibrium. The standard error is calculated using 

( ) [ ]( )22432 26127
1

var ������ −+−+−= jjjjjjE hhhhhh
n

V . 
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Caugant et al. (1987), is treated as a single individual, 17.014.0 ±−=AI . Maynard 

Smith et al. (1993) argue that this is evidence for an epidemic population structure; 

that each ET cluster is the result of recent growth of a particular clone against a 

backdrop of frequent recombination. Subsequent studies of MLST data have shown 

the same pattern of significant IA for all isolates, but non-significant IA when each 

cluster is treated as a single individual (Holmes et al. 1999; Jolley et al. 2000). 

 

There are a number of problems with the model and analysis. Firstly, the epidemic 

clone model provides a description of the population structure, but not a description of 

the evolutionary processes that cause the population structure. Secondly, if 

recombination is an important process in meningococcal evolution, then it is not clear 

that epidemic clusters can be identified using a UPGMA dendrogram. Indeed, for a 

recombining population “ there is no justification for constructing trees: one might as 

well construct a tree for the members of a panmictic sexual population”  (Maynard 

Smith et al. 1993). Yet it is unclear how to identify members of an epidemic cluster 

without a full specification of the evolutionary model. Despite these complaints, the 

epidemic clone model is useful in illustrating that a clonal view of meningococcal 

evolution is unsatisfactory. 

 

1.2.2.2 Relative contribution of recombination and mutation 

Numerous attempts have been made to quantify the extent of recombination in 

meningococcal populations. These studies have benefited from the greater resolution 

afforded by nucleotide sequencing and MLST, which reveals synonymous nucleotide 

polymorphism that is invisible to MLEE. There is a large body of evidence supporting 

the importance of recombination in meningococcal evolution from a number of 
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sources (Feil and Spratt 2001). Mosaicism has been observed in the nucleotide 

sequences of housekeeping genes (Zhou and Spratt 1992; Feil et al. 1995; Feil et al. 

1996; Zhou et al. 1997), which can only be explained by frequent recombination. 

Comparison of meningococcal sequences with homologues in other neisseriae 

suggests that importation from closely related commensals may be an important 

process in addition to intraspecific recombination (Zhou et al. 1997; Linz et al. 2000). 

Furthermore, splits decomposition (Bandelt and Dress 1992; Dopazo et al. 1993) 

indicates that the evolutionary history of meningococcal housekeeping genes is better 

represented by a network than a strictly bifurcating tree which would be produced 

under clonality (Holmes et al. 1999). 

 

In a frequently recombining organism there is no sense in which there is a single 

phylogenetic tree for a collection of isolates. Recombination will cause there to be 

different phylogenies at different positions in the genome. The frequency of 

recombination determines the extent to which these trees are correlated. Therefore the 

degree of incongruence between phylogenetic trees at distinct loci is a way to quantify 

the extent of recombination in a population. A subset of 30 out of a global sample of 

107 predominantly disease-causing meningococci (Maiden et al. 1998) were analysed 

to quantify the effect of recombination on phylogenetic congruence (Holmes et al. 

1999; Feil et al. 2001). Under the null hypothesis of complete linkage in the absence 

of recombination, all loci share the same phylogenetic tree topology. For each MLST 

locus a maximum likelihood (ML) tree was estimated. To test for congruence between 

the ML tree topology at each locus and all the others, the difference in log likelihood 

was calculated, having re-optimised the branch lengths for the other trees. A null 

distribution for the difference in log likelihood was produced using 200 bifurcating 
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topologies simulated uniformly at random. Figure 10 shows that the difference in log 

likelihood between the ML topology at each locus and the six others (pink squares) is 

not significantly less than for the random topologies (blue squares). The extent of 

recombination in N. meningitidis is therefore sufficient to create phylogenetically 

incongruent trees within a 450bp sequence (Feil et al. 2001). 

 

Holmes et al. (1999) suggested that mutation may not be the primary route by which 

new allelic variants arise in the meningococcus. MLST data allows the role of 

mutation and recombination to be disentangled because the nucleotide differences 

between alleles can be examined. Point mutation changes a single site at a time, 

whereas recombination can cause mosaicism wherein a whole tract is imported from 

Figure 10 Phylogenetic incongruence amongst MLST loci for 30 isolates representative of global 

disease. Horizontal axis is the difference in log likelihood between the ML tree for each locus and 

the ML tree for another locus (pink squares) or a random tree (blue diamonds). Trees are spread 

vertically in no particular order. Trees to the left of the dashed line are more congruent with the ML 

tree for that locus than 99% of the random trees. Source: Feil et al. 2001, supplementary material 

(http://www.pnas.org). 
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another allele in the population. In the 107 isolates representing global disease 

(Maiden et al. 1998), nine out of 10 clonal complexes defined by a UPGMA 

dendrogram contain isolates that differ by one or two loci (Feil et al. 1999). In total 

there are 23 isolates that differ from the ST typical of that clonal complex. Of those, 5 

differ from the typical genotype at a single nucleotide position, indicative of a point 

mutation. The rest differ by five or more polymorphisms, which Feil et al. (1999) 

therefore took to be the result of recombination. 

 

For example, Figure 11 illustrates polymorphism within clonal complexes at the aroE 

locus. In three clonal complexes (A4 cluster, ET-37 complex and subgroup VI) a low 

frequency variant differs from the common, or central, genotype at aroE. Of those, 

only one (allele 8 in the A4 cluster) differs from the typical genotype by a single 

nucleotide polymorphism (G T, underlined in Figure 11). Feil et al. (1999) use these 

observations to estimate that the relative frequency of recombination events to 

mutation events is 18:5, or 3.6 times as often. Subsequent studies have used the same 

procedure to estimate that recombination is 4.75 times (Feil et al. 2001) or 275 times 

 

Figure 11 Polymorphic sites in aroE within three clonal complexes. The clonal complexes are labelled at 

the far right. For each clonal complex there is one bold row representing the central, or most common, 

genotype. The non-bold rows represent all other variants assigned to that clonal complex. Dots indicate 

that the allele does not differ from the top row sequence. Sites are numbered above in vertical format. 

Sites that are underlined are putative point mutations. Adapted from: Feil et al. 1999. 
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(Jolley et al. 2000) more frequent than mutation. Whilst there are obvious problems 

with the estimation procedure, not least of which the lack of quantification of 

uncertainty, these figures show that recombination is a potent evolutionary force in 

meningococci, and that most allelic novelty probably arises by recombination of 

existing alleles rather than de novo mutation. 

 

1.2.2.3 BURST 

Recombination is an important force in meningococcal evolution, and despite the 

presence of clusters of closely related genotypes, phylogenetic congruence is all but 

obliterated even within a 450bp gene fragment (Feil et al. 2001). A bifurcating tree is 

an inadequate description of the ancestry of a collection of meningococcal genotypes 

(Holmes et al. 1999), so the identification of clonal complexes on the basis of 

UPGMA dendrograms is questionable. Therefore the question arises as how to 

identify and visualize clusters of meningococcal genotypes. 

 

From the perspective of the epidemic clone model (Maynard Smith et al. 1993), a 

clonal complex is a group of individuals descended from a founding genotype that 

had a fitness advantage allowing it to proliferate rapidly in the population. As the 

clonal complex expanded over time it will have experienced mutation and 

recombination events leading to divergence from the founding genotype. MLST 

shows that clusters of meningococcal genotypes exist, in which frequent genotypes 

are closely related to numerous low-frequency genotypes, separated not necessarily 

by mutation, but commonly by recombination events. Linkage disequilibrium may 

appear to be high not because of strict clonality, but because short, recent explosive 
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Box 3 – The eBURST Algorithm 

 

Clonal complex eBURST groups all STs into connected, mutually exclusive sets 

within which every ST differs from at least one other by no more than a single locus. 

 

Primary founder Within each clonal complex, the ST that differs from the greatest 

number of STs by no more than a single locus (single locus variants, SLVs), is 

defined to be the primary founder. In the event of a tie, the number of double locus 

variants (DLVs) is taken into account, and so on. The frequency of the STs does not 

come into consideration. 

 

Bootstrap support for the primary founder is obtained as follows. Within the clonal 

complex, a collection of STs the same size as the number of unique STs is 

resampled, with replacement, from those unique STs. The primary founder of that 

collection is then determined. The procedure is repeated 1,000 times, and the 

bootstrap support for a particular ST is the percentage of resampled collections in 

which it was determined to be the primary founder. Resampled collections in which 

that particular ST was not present are excluded. 

 

Subgroups and subgroup founders Moving outwards from the primary founder, 

STs are defined to be subgroup founders if they are SLVs of two or more STs not 

currently connected. Having connected all members of the clonal complex, starting 

farthest from the primary founder, the subfounder-descendant relationship can be 

reversed if that would increase the number of SLVs connected to the subgroup 

founder. 
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bursts of selected clones causes LD to temporarily accumulate faster than it can be 

broken down by recombination. 

 

eBURST (Based Upon Related Sequence Types) is a deterministic algorithm used for 

clustering STs based on a more realistic account of meningococcal evolution (Feil et 

al. 2004). Although eBURST is non-parametric in the same sense that the UPGMA 

dendrogram is non-parametric, it does use the informal model of an epidemic 

population structure to inform the rules used in the clustering algorithm (Box 3). 

Figure 12 shows a UPGMA dendrogram for the ST8 and ST11 clonal complexes 

(formerly the A4 cluster and ET-37 complex) for all STs in the Neisseria MLST 

database that differ from ST8 or ST11 at less than 4 loci. Figure 13 shows the 

 

Figure 12 UPGMA dendrogram of the ST8 (A4 cluster) and ST11 (ET-37) clonal complexes. All STs 

with fewer than 4 alleles different to ST 8 or ST11 were included from the Neisseria MLST database. 

Source: Feil et al. (2004). 
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corresponding eBURST diagram for these clonal complexes, and closely related STs 

(Feil et al. 2004). Whereas the dendrogram, of necessity, depicts a hierarchical 

population structure within each clonal complex, the eBURST diagram depicts a 

frequent founding genotype (represented by the diameter of the node) surrounded by 

many SLVs (single locus variants), a number of which may be founders of subgroups 

themselves. So whilst the dendrogram is constrained to portray a hierarchical 

population structure, the eBURST diagram is able to, but actually portrays a radiation 

of rare, closely related genotypes surrounding a core genotype. eBURST assigns 

bootstrap support of 100% for the primary founders of the ST8 and ST11 complex. 

Whilst the dendrogram suggests that the ST8 and ST11 complex are closely related, 

eBURST identifies them as distinct entities and does not, therefore, infer the 

relationship between the two. 

 

 

Figure 13 eBURST diagram of the group containing the ST8 and ST11 clonal complexes. A group 

was defined as STs differing by less than 3 alleles from one another. Clonal complexes (connected 

nodes in the diagram) were defined as STs differing by less than 2 alleles from one another. 

Source: Feil et al. (2004). 
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The identification of clonal complexes in N. meningitidis is now informed by a 

combination of historical convention (largely influenced by epidemiological 

considerations and UPGMA dendrograms), the clusters identified using the eBURST 

algorithm, and a committee of microbiologists (chosen from amongst delegates of the 

International Pathogenic Neisseria Conference). As a result much of the nomenclature 

has been changed, and continues to be revised. The A4 cluster and ET-37 complex 

have become the ST8 and ST11 complex respectively. Serogroup A subgroups have 

been merged and renamed to create the ST1 complex (subgroups I/II), ST 5 complex 

(subgroups III/VIII) and ST 4 complex (subgroups IV-1/IV-2). 

 

However, there are problems with the eBURST algorithm, and hence the clonal 

complexes it produces. These problems are essentially the result of the non-parametric 

nature of eBURST. In the absence of a statistical model, it is impossible to assign 

uncertainty to the groupings. It is likely that a statistical description of the epidemic 

clone model would report considerable uncertainty in the group designations. It is not 

clear what the null model is for the bootstrap support that eBURST calculates for the 

assignment of primary founders (Box 3), and at any rate it is calculated conditional 

upon the groupings, the reliability of which is unknown. The primary founder is not 

necessarily present in the sample, and in the absence of an explicit evolutionary model 

it is impossible to comment on the ancestral relationships between clonal complexes, 

or the age of those complexes. Finally, there is no framework for falsifying the model 

if the fit is poor. 
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1.2.3 Strain theory 

An epidemic population structure is not the only explanation for high levels of linkage 

disequilibrium despite frequent recombination. One alternative recognised but not 

explored by Maynard Smith et al. (1993) is that selection can cause non-random 

associations of alleles across loci. Epistasis between loci can cause LD not just at the 

loci under selection, but across the genome. Strain theory suggests that the interaction 

between the host immune system and antigenic loci can cause epistasis if there is 

some immunological cross-protection between alleles at individual loci. This epistasis 

might explain the paradox that pathogens such as N. meningitidis appear to persist as 

strains despite the constant exchange of genetic material (Gupta et al. 1996). 

 

1.2.3.1 Immune selection can structure the pathogen population 

Suppose there are two distinct loci, A and B that encode antigens. Both loci are 

dimorphic (Figure 14). There are four genotypes (i.e. combinations of alleles at the 

two loci) , ,  and . Genotypes that are different at both loci are called 

discordant. So  and  are discordant, and  and  are discordant. Gupta et al. 

(1996) propose an SI-type model (Anderson and May 1991) that is defined by the 

differential equations 
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where zi and yi are the proportion of hosts susceptible to and infectious with genotype 

i respectively. 1/�  and 1/�  are life expectancy and duration of infectiousness 

respectively in the host. � i is the per-capita force of infection for genotype i, which is 

the rate at which susceptible hosts become infected. � i equals the transmission 
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coefficient � i multiplied by the frequency of genotype i in the host population 

following recombination; the loci are assumed to be unlinked. � i is the proportion of 

the host population with immunity to genotypes concordant to i, and �  is the degree of 

cross-protection afforded against a concordant genotype. 

 

Figure 14 shows that the key parameter determining the behaviour of the model is the 

degree of cross-protection, � . When there is weak cross-protection, so that 

encountering a particular allele in one genotype confers no immunity to that allele in 

other genotypes, all genotypes can coexist. When cross-protection is strong, 

concordant pairs are in direct competition, resulting in exclusion of one or other 

discordant pair. In the model which pair is out-competed depends on the initial 

genotype frequencies. At intermediate levels of cross-protection, the population 

switches between discordant pairs intermittently. 

 

Locus A 

Locus B 

Figure 14 Above: in the simplest model of strain 

structure there are two immunogenic loci, A 

(squares) and B (circles). Each has two alleles. 

Right: the degree of cross-protection between alleles 

determines the population structure. Weak cross-

protection allows all combinations to coexist (top). 

Strong cross-protection leads to the competitive 

exclusion of concordant combinations (bottom). In 

between lies unstable switching between discordant 

pairs (middle). Source: Gupta and Anderson (1999). 
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1.2.3.2 Evidence for meningococcal strain structure 

Gupta et al. (1996) suggest that the population structure of meningococci can be 

explained by immune selection causing exclusion of immunologically overlapping 

genotypes. Serogroup B and C meningococci sampled from England and Wales in 

1989-1991 were serosubtyped for the VR1/VR2 combination at the porA locus 

(Feavers et al. 1996). Figure 15a shows the observed frequencies of VR1/VR2 epitope 

combinations, and Figure 15b the expected frequencies under linkage equilibrium. 

What is striking about Figure 15a is that broadly speaking each VR1 epitope is 

associated with only a single VR2 epitope at any appreciable frequency (and vice 

versa). Not only do the data reject the null hypothesis of random association (p < 0.01 

based on a 2 test with 15 d.f.), but the non-random association of particular epitopes 

to the exclusion of other combinations is the pattern predicted by the strain theory 

model (Gupta et al. 1996). 

 

 

Figure 15 Association between epitopes of the VR1 and VR2 region of the PorA outer membrane protein. 

(a) Observed frequency distribution. (b) Expected frequency distribution under linkage equilibrium. 

Source: Gupta et al. (1996). 
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However, there are a number of problems with this analysis. In a finite population 

drift can cause associations between loci, that is LD, even at unlinked loci by chance 

alone. The VR1/VR2 regions of porA are tightly linked, so LD would be expected to 

be even higher. Thus zero LD is not the appropriate null model. Because the 

appropriate null model has not been tested, it is not possible to be sure that the 

associations of VR1/VR2 epitopes are non-random after all. Secondly, a statistic 

sensitive to the mutual exclusivity of genotypes imposed by strain structure, and not 

merely to LD per se, would be required to show that immune selection is responsible 

for the observed LD, and not some other process. 

 

1.2.4 Neutral models 

Owing to high carriage rates and low incidence of disease, it has been postulated that 

N. meningitidis is an accidental pathogen (Levin and Bull 1994; Maiden 2002). That 

is to say, that disease-causing strains are so rare that they cannot possibly be 

important for transmission or long-term persistence of meningococcal populations. 

Indeed, most epidemics are relatively modest in size, and subsequently die out, 

suggesting that pathogenicity might be an evolutionary dead end for the 

meningococcus (Stollenwerk et al. 2004). If virulence is indeed detrimental, or at best 

equivocal to the evolutionary success of meningococci, then selection for epidemic-

causing variants may not be an important explanation for the structure of 

meningococcal populations. As noted by Maynard Smith et al. (1993), drift alone can 

cause non-zero levels of linkage disequilibrium in a finite population. Studies show 

that a purely neutral model with drift does not adequately explain the observed 

patterns of genetic diversity even in carriage studies (Fraser et al. 2005). However, 

Fraser et al. (2005) claim that when the effects of local transmission or sampling bias 
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are taken into account, meningococcal evolution may amount to no more than a 

neutrally evolving commensal with the occasional accidental progression to 

pathogenesis. This they call the neutral microepidemic model. 

 

1.2.4.1 Standard neutral model 

In the approach of Fraser et al. (2005), the patterns of genetic diversity observed in 

the population are summarised by a small number of statistics. Some of these statistics 

are used to estimate the parameters for the model, and the model is then assessed for 

goodness-of-fit. Figure 16 shows the observed allelic mismatch distribution (grey 

bars) in a population of carried meningococci sampled from the Czech Republic in 

1993 (Jolley et al. 2000). The allelic mismatch distribution shows the proportion of 

pairs of individuals that differ at 0, 1, …, 7 loci. 

 

Figure 16 Allelic mismatch distribution for Czech carriage study (grey bars). The horizontal axis shows 

the number of loci at which a pair of isolates can differ (up to 7 for MLST), and the vertical axis the 

proportion of pairs that differ at that number of loci. Open circles show the fit under the standard neutral 

model, and the filled circles show the fit under the neutral microepidemic model. Source: Fraser et al. 

(2005). 
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In the simplest evolutionary model, known as the standard neutral model, members of 

the population reproduce with equal vigour. The population size is constrained so that 

it remains at a constant size N. Each generation the total rate of mutation amongst all 

individuals is � /2 per base pair, and the total rate of recombination amongst all 

individuals is � /2 per base pair. Under the standard neutral model with infinitely many 

alleles, the expected frequency of each of the grey bars in Figure 16 is known 

(Kimura 1968). Fraser et al. (2005) assume that the allelic mismatch distribution is 

multinomially distributed with these expected frequencies. In an attempt to account 

for the fact that this is wrong, owing to the non-independence of the different classes 

in the allelic mismatch distribution, they calculate standard errors by taking the 

observed degrees of freedom to be n rather than ( ) 2/1−nn , where n = 217 is the 

number of isolates. 

 

The estimated population rates of mutation and recombination are 2.8=θ  and 

7.5=ρ  respectively, which suggests that recombination events occur 1.44 times less 

frequently than mutation events, in contrast to previous work (Feil et al. 1999; Feil et 

al. 2001), including analysis of the same data (Jolley et al. 2000). No confidence 

intervals were published, even using the approximate correction for the degrees of 

freedom. Simulations using the estimated parameters did not produce the observed 

allelic mismatch distribution (open circles, Figure 16). The observed homozygosity 

(proportion of identical isolates) lay above the standard error, indicating that the 

standard neutral model is inadequate to explain the observed patterns of genetic 

diversity in a population of carried meningococci (Fraser et al. 2005). 
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1.2.4.2 Neutral microepidemic model 

The neutral microepidemic model is a mathematically simple extension to the 

treatment of the standard neutral model by Fraser et al. (2005), based on the idea that 

in natural populations of infectious agents there exist localised transmission chains. If 

a sample contains multiple isolates from the same short transmission chain, or 

microepidemic, then there will be an excess of homozygosity (Fraser et al. 2005). In a 

eukaryote this would be analogous to assembling a population sample taking multiple 

members of the same family. So the model is essentially neutral evolution with biased 

sampling. 

 

An extra parameter, he, is added to the neutral model which allows homozygosity (the 

proportion of individuals that are identical) to vary freely from the mutation and 

recombination rates. As a result, the observed and expected homozygosity match 

exactly (Figure 16, filled circle, 0 discordant alleles). This simple extension appears to 

fit the data well, because the rest of the allelic mismatch distribution lies well within 

the standard errors from simulation (filled circles, Figure 16). Under this model the 

parameter estimates were 2.10=θ  and 6.13=ρ , suggesting that recombination 

occurs 1.33 times more frequently than recombination, which agrees better with 

previous work. Fraser et al. (2005) modelled the biased sampling scheme as taking an 

average of �  individuals from each of nc microepidemic transmission chains. Using a 

simple relationship between the observed homozygosity and these parameters, 

estimates of 9=cn  and 1.13=σ  are obtained. This suggests that nine microepidemic 

clusters have been over-represented by an average of 13.1 isolates. 
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Interestingly, Buckee et al. (2004) have used simulations to show that when the 

meningococcal population is subdivided because of clustering in the host contact 

network, such as in the microepidemic model, strain theory predicts that structuring of 

meningococci into antigenically discordant types will only occur locally. Because of 

the random way in which a particular set of antigenically discordant types come to 

predominate locally, no particular set will predominate across the population as a 

whole, so elevated LD between loci at the level of the whole population is no longer 

predicted. As a result, strain theory and the neutral microepidemic model appear to be 

mutually exclusive explanations for elevated patterns of LD in meningococci. 

 

There are several advantages to formulating an explicit statistical model, such as the 

neutral microepidemic model. Firstly, the parameters can be estimated and the 

uncertainty in these estimates quantified (although the latter was not performed in this 

case). Secondly, by making the model mathematically explicit its interpretation is less 

vulnerable to vague verbal reasoning, and more precise hypotheses can be evaluated. 

Thirdly, the model can be used to make predictions, including predicting other aspects 

of the data. These predictions can then be used to validate the model. Fraser et al. 

(2005) showed that the nearest-neighbour distribution (the distance to each isolate’s 

most similar non-identical neighbour) simulated under the estimated parameters was a 

good fit to the observed distribution. Goodness of fit testing allows the model to be 

falsified if it is a poor description of the data, although a more thorough investigation 

than performed in this example might be carried out. MLST provides full nucleotide 

sequence data from loci distributed around the genome. The approach used by Fraser 

et al. (2005) discards much of that information by reducing the sequence information 

into the number of pairwise allelic differences between isolates. Throwing away 
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information in this way results in lower power and greater uncertainty in parameter 

estimates, and less sensitive goodness-of-fit testing. The objective of population 

genetics techniques is to model nucleotide evolution in a statistical framework, obtain 

estimates for evolutionary parameters of interest, and refine the models using model 

criticism techniques. 

 

1.3 Population genetics in epidemiology 

Genetic diversity in pathogen species contains information about evolutionary and 

epidemiological processes, including the origins and history of disease, the nature of 

the selective forces acting on pathogen genes and the role of recombination in 

generating genetic novelty1. The role of population genetic analysis is to extract as 

much information from the nucleotide sequences as possible by using realistic 

evolutionary models. This section reviews recent applications of such methods to 

pathogenic organisms other than N. meningitidis, and compares the use of population 

genetic, or population-model based, approaches to evolutionary inference with 

phylogenetic, or population-model free, methodologies. 

1.3.1 Pathogen biology 

Like any other organism, a pathogen has an evolutionary history that is reflected in 

the distribution of genetic diversity within the species. What makes a pathogen special 

is that this evolutionary history is dominated by the successful and ongoing 

                                                 

1 Section 1.3 was originally written as a review article: D. J. Wilson, D. Falush and G. McVean (2005) 

Germs, genomes and genealogies. Trends in Ecology and Evolution 20: 39-45. All three authors 

contributed to writing the text. 
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colonisation of a host. Therefore, analyses of pathogen genomes can not only tell us 

things about the history of disease (when did the epidemic begin?), but also inform 

efforts to understand (which genetic changes made the ancestral organism 

pathogenic?) and control the disease (which is the best target for a vaccine, will 

vaccines be effective in different populations?). 

 

The statistical and analytical tools available for comparing molecular sequences 

(DNA, RNA or protein) from representative pathogen isolates are becoming 

increasingly sophisticated. The first part of this section summarises recent research 

where molecular sequences alone have been used to understand pathogen biology. It 

will focus on: the reconstruction of a pathogen’s origin and history; the nature of 

immune-mediated selection acting on pathogen genomes; and the role of 

recombination in generating genetic novelty. The second part will discuss the 

different methodologies that can be applied to molecular sequence data; in particular 

the use of phylogenetic methods versus population genetic ones. Phylogenetic 

methods were originally developed for the analysis of sequences from different 

species and make no assumptions about how population-level processes such as 

genetic drift, natural selection, changes in population size or geographical structure 

influence the shape of underlying gene trees. Population genetic approaches gain extra 

power to understand such factors by explicitly modelling their effects on tree-shape, 

and treating quantities of interest as explicit parameters for estimation. Integrating 

epidemiological models into a population genetics framework allows the estimation of 

epidemiologically relevant parameters. 
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1.3.2 The origin and history of pathogens 

Tracing the origins and history of pathogen species provides information about what 

causes new epidemics and how they spread. Phylogenies constructed from samples of 

contemporary pathogen diversity reconstruct the history of those ancestors that have 

left descendants, the depth and shape of which can tell us about the size and structure 

of historical populations. For example, explosive growth generates characteristic 

‘star-like’  phylogenies as seen in the HIV viruses and subtypes (Lemey et al. 2003; 

Robbins et al. 2003; Lemey et al. 2004). Historical changes in the pathogen 

population size may also be detected, e.g. the major increase in population size of the 

hepatitis C virus during the first half of the 20th century (Pybus et al. 2003). Dating 

events in phylogenies constructed from contemporary genetic diversity requires an 

independent estimate of the nucleotide (or amino acid) substitution rate. For many 

species such estimates are very approximate; e.g. estimates of the mutation rate in 

Plasmodium obtained by comparing P. falciparum (the most virulent human malaria 

parasite) and P. reichenowi genes (the most closely related Chimpanzee malaria 

parasite) differ by up to three-fold depending on the age postulated for the human-

chimp split and which codon positions (2-fold or 4-fold degenerate positions) are used 

in the comparison (Rich et al. 1998). However, when isolates sampled from different 

time-points are available they provide internal calibration points (Drummond et al. 

2002; Drummond et al. 2003b). 
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Other features of a pathogen’s history may also be recovered. In highly recombining 

species, clustering algorithms (Falush et al. 2003a) allow the reconstruction of 

ancestral population structure and subsequent admixture, without subjective definition 

of population groups. Figure 17 shows the application of this technique to the enteric 

bacterium Helicobacter pylori. Reconstructing the ancestral populations revealed that 

the ancient migratory routes of H. pylori closely resemble that of their human hosts 

(Falush et al. 2003b). Where populations can be defined a priori, inferences can be 

made about the relative sizes, migration rates and dates of population separation. For 

example, analyses of natural populations of the Chestnut blight fungus, Cryphonectria 

hypovirus 1, have shown that transmission rates in the wild are much higher than 

those observed in lab experiments (Carbone et al. 2004). 

 

Figure 17 Putative and 

modern migration routes of 

Helicobacter pylori, as 

inferred by a population 

genetics clustering method 

(Falush et al. 2003a). A 

Ancestral sources of modern 

populations as a fraction of 

the genome. Five ancestral 

source populations were 

identified: two from Europe 

(green and grey), two from 

Africa (blue and red), and one 

from Asia (yellow). B 

proposed migration routes of 

those ancestral populations. 

Source: Falush et al. (2003b). 
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1.3.3 Immune-mediated selection on pathogen genomes 

For pathogen species, the selective pressures arising from the host immune system are 

a major influence on its evolution. Selection occurs both at the individual level, 

through the interaction of pathogen antigens and systems of innate and acquired 

immunity, and also at the population level, through the dynamics of herd immunity 

and cross immunity. How such factors influence patterns of genetic variation within 

pathogen populations depend on the relative timescales of host and pathogen 

adaptation. In species such as HIV-1 where rates of adaptation in the pathogen are 

high (Rambaut et al. 2004), immune-escape mutants will arise and be selected for 

within hosts. The effect of such selection is to transiently distort patterns of pathogen 

genetic variation within the host through the hitch-hiking effect (see Figure 18), a 

(b)

time

frequency

(b)

time

frequency

(a)

time

frequency

(a)

time

frequency  

Figure 18 The ability to detect adaptive changes depends on the timescale of evolution. (a) an 

adaptive mutation occurred since the mrca of the sample, so the genealogy of the sample is 

distorted. The signature of selection will be visible in the frequency spectra of linked sites. (b) No 

adaptive mutation has occurred since the mrca, so the genealogy is unaffected. The signature of 

selection will be visible only by comparison to a closely related species, which would reveal an 

elevated rate of non-synonymous change. 
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pattern detected in longitudinal samples from HIV-1 infected patients (Shriner et al. 

2004). However, immune-escape mutations do not generally provide an advantage to 

viruses infecting other hosts, who are unlikely to have encountered a virus with the 

same antigen type. Instead, diversifying selection within infected individuals results in 

pathogen species characterized by diverse and rapidly changing antigenic variation, 

the hallmark of which is an excess of protein-changing variation (relative to putatively 

neutral, non-protein changing variation) at antigenic genes during the course of the 

infection. Such a pattern is seen in HIV-1, particularly in the env gene, by use of 

codon-based phylogenetic methods (de Oliveira et al. 2004; Choisy et al. 2004). 

 

Another route to detecting diversifying selection comes from comparison of within-

species variation to between-species divergence. Because immune-escape mutants are 

unlikely to ever become fixed within a species, high levels of protein-changing 

variation at antigenic genes do not necessarily translate into high rates of change 

between species. For example, in a study of the gene encoding the erythrocyte-

binding antigen EBA-175 in P. falciparum and the corresponding gene in P. 

reichenowi, there appears to be an excess of within-species variation relative to 

between-species divergence. The effect is not seen in the related gene eba-140, which 

suggests that eba-175 is under within-host diversifying selection, probably as a result 

of interaction with the human immune system (Baum et al. 2003). 

 

When cross-immunity is strong and rates of pathogen adaptation are slower, the 

pathogen population can theoretically become structured into different antigenic types 

Gupta et al. 1996; Haraguchi and Sasaki 1997; Lythgoe 2002; see section 1.2.3). Such 

types are maintained, or ‘balanced’ , over time by frequency-dependent selection. 
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Structuring may be detected by comparing patterns of genetic variation to those 

expected under simple mathematical models of genetic variation, such as the neutral 

coalescent. In particular, balancing selection can result in genes with elevated levels 

of genetic diversity, changes in the distribution of allele frequencies and can inhibit 

drift by maintaining genetic variation within multiple populations despite geographic 

isolation. Such patterns are observed at ama1 (Polley et al. 2003), a gene of P. 

falciparum which encodes an important antigen that represents a potential vaccine 

target. 

 

Genome wide structuring of genetic variation (in the sense that the population is 

clustered into groups of closely-related individuals) is found in many pathogen 

populations. However, in addition to balancing selection, non-selective factors (e.g. 

genetic drift, bottlenecks, geographic and demographic stratification) and short-term 

selective processes (repeated partial selective sweeps associated with the origin of 

novel strains) can also generate similar patterns of linkage disequilibrium. Assigning 

the contributions of each of these factors to the observed disequilibrium represents a 

major challenge. Another potential explanation for stable maintenance of diverse 

types is antibody-dependent enhancement, where primary infection enhances rather 

than restricts the severity of subsequent infection by another strain (Ferguson et al. 

1999), a process thought to be important for dengue virus. 

 

1.3.4 The relevance of recombination 

The tools available for inferring evolutionary history depend considerably on the 

biology of the pathogen. If recombination is rare, or hosts are only ever infected by a 

single pathogen strain, reconstruction of a single phylogeny is the natural starting 
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point for any analysis. In contrast, if recombination between different strains is 

common, different parts of the genome will have different phylogenetic histories, thus 

limiting the use of phylogenetic methods. In recombining species, instead of 

reconstructing a phylogenetic tree when a single tree may not exist, data sets can be 

described by summaries of the data such as the frequency distribution of 

polymorphisms, levels of linkage disequilibrium and measures of differentiation 

between populations (these summaries are also applicable to non-recombining 

species). Such summaries are the starting point for making inferences about the 

evolutionary history of the pathogen species, so knowing whether a species is 

recombining or not is critical in the choice of appropriate analyses. 

 

Recombination also has major implications in studies that attempt to map 

phenotypically important genes by association, or through the hitch-hiking effect of 

adaptive mutations (Anderson 2004), because the rate of recombination determines 

the density of markers required to reliably detect causative mutations. Furthermore, 

estimates of important quantities, such as mutation rates, selection parameters 

(Anisimova et al. 2003; Shriner et al. 2003) or the age of a species’  most recent 

common ancestor (mrca), are strongly biased if data from a recombining species are 

treated as having come from a clonal species (Schierup and Hein 2000).  

 

The simplest way of detecting recombination from gene sequences is the 

identification of mosaic sequences, as in section 1.2.2.2. For example, in an alignment 

of sequences from avian influenza A, a highly pathogenic strain was shown to have a 

30-nucleotide insert in the haemagglutinin gene relative to the low pathogenic strains, 

which is 100% identical to part of the neuraminidase gene (Suarez et al. 2004). More 
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sophisticated approaches to detecting mosaic structures have recently been developed, 

for example scanning methods that detect recombinant forms such as those observed 

in HIV-1 among characterized subtypes (Strimmer et al. 2003), and methods for 

weakly linked markers that detect admixture between subpopulations as in 

Helicobacter pylori (Falush et al. 2003a; Falush et al. 2003b). 

 

Mosaic identification effectively assumes that all recombination events are very 

recent, and that genomes can be separated into ‘pure’  and ‘mosaic’ . In unstructured 

(panmictic) recombining species such a distinction is not valid, in which case an 

alternative is to try to identify the positions along the molecular sequence at which the 

phylogenetic tree changes. Many methodologies for detecting shifts in phylogeny 

have been developed, with recent work focusing on methods that aim to accommodate 

uncertainty about the tree reconstructions (Suchard et al. 2002; Husmeier and 

McGuire 2003). These methods work well at detecting a low number of 

recombination breakpoints along a sequence; for example in an alignment of the 

entire 3.2 kb genome of four strains of hepatitis B, two changes in topology were 

detected (Husmeier and McGuire 2003). Yet for many pathogens the rate of 

recombination is sufficient that changes in phylogeny are expected every few base 

pairs (Posada et al. 2002; Awadalla 2003). 

 

For most species the rate of recombination relative to mutation is sufficiently high 

that there is little information about the underlying tree at any given position in the 

genome, and therefore little chance of exactly detecting recombination breakpoints. 

Under such circumstances the impact of recombination can be summarised either by a 

nonparametric estimate of the minimum number of recombination events in the 
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history of the gene samples, assuming no recurrent or back mutation (Myers and 

Griffiths 2003), or by a model-based estimate of the rate of recombination relative to 

genetic drift (Stumpf and McVean 2003). Coalescent methods can estimate 

recombination rates under models with recurrent and back mutations (Kuhner et al. 

2000; McVean et al. 2002), and have demonstrated very high levels of recombination 

in various pathogens, including HIV-1 (McVean et al. 2002) and P.  falciparum 

(Baum et al. 2003). Because genetic exchange can only occur between pathogen 

genomes in the same host, coalescent approaches measure the effective recombination 

rate, which can provide an indication of the rate of multiple infection (Bowden et al. 

2004). Genomes with high intrinsic recombination rates, such as P. falciparum (Su et 

al. 1999) and HIV-1 (Zhuang et al. 2002; Levy et al. 2004) can therefore exhibit 

either high or low levels of historical recombination depending on the wider pathogen 

epidemiology (Anderson et al. 2000; McVean et al. 2002). Recombination has 

important biological, as well as methodological, consequences. Recombination (both 

homologous and non-homologous, or illegitimate) is an important source of genetic 

novelty, particularly at antigenic loci such as the haemagglutinin- and neuraminidase-

encoding genes of influenza (Steinhauer and Skehel 2002; Li et al. 2004), where the 

origin of novel strains by recombination is known as antigenic shift.  

 

1.3.5 Phylogenetic and population genetic approaches to inference 

Diverse biological questions in disparate pathogen species naturally require a variety 

of approaches to analysing molecular sequence data. However, there is a broad 

distinction between those approaches which derive from the phylogenetic background 

and those that are rooted in population genetics modelling. The key distinction is that 

phylogenetic models make no assumptions about how population-level processes 
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(such as genetic drift, natural selection, inbreeding, restricted gene flow) influence the 

shape of genealogies (or gene trees) underlying samples of genetic material from 

within populations, while population-genetic approaches model such factors 

explicitly. 

 

Phylogenetic approaches were first developed for the analysis of molecular sequences 

sampled from different species and have become widespread in the analysis of 

pathogen species diversity (Nielsen and Yang 1998; Nielsen and Huelsenbeck 2002; 

Lemey et al. 2003; Robbins et al. 2003; Yang et al. 2003; Grenfell et al. 2004; Leslie 

et al. 2004; Rambaut et al. 2004; Sheridan et al. 2004). In addition to estimating 

phylogenetic trees, such approaches can be used to date epidemics (Korber et al. 

2000; Lemey et al. 2003; Robbins et al. 2003), detect recombination events 

(Husmeier and McGuire 2003) and identify sites of diversifying selection (Nielsen 

and Yang 1998; Suzuki and Gojobori 1999). However, because phylogenetic 

approaches were originally designed to analyse sequences from different species, they 

naturally assume that the shape of the tree itself is not informative about the quantities 

of interest. Post-hoc interpretation of tree-shape has, however, been important in the 

analysis of pathogen diversity; e.g. the observation of ladder-like trees for influenza 

has shaped theories of antigenic drift and shift (Fitch et al. 1997; Ferguson et al. 

2003; Grenfell et al. 2004; Smith et al. 2004). 

 

Population-genetic methods, in contrast, are based on mathematical models of 

populations; initially the ‘bean-bag’ genetics of Fisher, Wright and Haldane and more 

recently the coalescent theory of Kingman (1982a, 1982b) and Hudson (1983). 

Coalescent models describe in a probabilistic manner how population-level processes 



 

 61 

influence the shape of genealogies underlying samples of gene sequences from within 

a population, and the resulting patterns of genetic variation. The standard neutral 

model (which underlies coalescent theory) assumes selective neutrality, constant 

population size and random mating, but can be extended to consider complexities 

such as population growth, inbreeding, geographical subdivision and different forms 

of natural selection (see Nordborg 2003 for a review). 

 

The difference between phylogenetic and population-genetic approaches leads to 

conceptual differences in how data are analysed. Where phylogenetic approaches 

make statements about the tree and the substitutions mapped on to it, population-

genetic approaches use the same genealogy to make statements about parameters of 

the coalescent model. For example, phylogenetic methods summarise variability 

among sequences by the branch lengths of the estimated tree, whereas population 

genetic methods estimate the population mutation rate 
�
/2, which is the product of the 

per generation mutation rate and the effective population size of a species, Ne. 

Likewise, phylogenetic methods detect adaptive evolution by the relative rate of 

protein-changing and silent substitutions on the tree, whereas population-genetic 

methods estimate the selection coefficient of individual mutations from their effect on 

the shape of the genealogy (Przeworski 2003). 

 

1.3.6 Advantages and disadvantages of population genetics 

The benefit of fitting an explicit population-genetic model is that it gives extra power 

to detect phenomena of interest, and test specific hypotheses. For example, 

phylogenetic methods cannot test for population growth, because only in a model-

based context do the star-like genealogies that population growth generates differ 
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from those expected without growth (without a model, all genealogy shapes are 

equally probable). Similarly, phylogenetic methods cannot detect single adaptive 

substitutions (Figure 18a) because distortion to allele frequencies caused by the hitch-

hiking effect is only quantifiable by comparison to the standard neutral model 

(without a model all allele frequency distributions are equally probable). More 

generally, comparison of data to the expectations of the standard neutral model is a 

route to learning about which biological processes have been important in shaping 

genetic diversity. Many statistical methods for testing the (null) standard neutral 

model are available. These are either goodness of fit tests that aim to reject the null 

model (e.g. Tajima’s [1989] D, Fu and Li’s [1993] D*, Fay and Wu’s [2000] H, the 

McDonald-Kreitman test [McDonald and Kreitman 1991] and the HKA test [Hudson 

et al. 1987]: discussed in Kreitman [2000] and Nielsen [2001]), or likelihood-based 

approaches that compare models with and without parameters of interest. 

 

The problem of fitting a population-model to the data is that the biological 

simplifications required in order to make the model tractable may also render it 

meaningless. The coalescent process derives from a simplification of reproduction in 

natural populations. For pathogens, where successful reproduction requires both 

replication within hosts and transmission between hosts, population genetics must 

either incorporate epidemiological parameters explicitly in models of ancestry, or 

demonstrate that ignoring epidemiology still provides useful and meaningful 

inferences. 

 

Both tasks are very much in their infancy. There is hope that the dynamics of simple 

epidemiological models, such as the susceptible-infectious-susceptible (SIS) model, 
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may give rise to genealogical models that are identical to those in well-characterized 

non-pathogen population-genetic models, such as metapopulations. That is the subject 

of the next section. However, where multiple strains with different epidemiological 

characteristics are considered, e.g. the epidemic-clone model for bacterial populations 

(Maynard Smith et al. 1993), it seems likely that novel population genetic models are 

required. 

 

1.4 Coalescent models of Neisseria meningitidis 

Undoubtedly the coalescent is a useful framework for evolutionary modelling, 

particularly for recombining organisms. However, its development has primarily been 

concerned with modelling populations of eukaryotic diploids, and it is not 

immediately obvious that the coalescent in its native form can be applied directly to 

obligate microparasites such as bacteria and viruses. Examples from section 1.2 show 

that it is imperative to specify the appropriate null model; failing to do so can render 

an analysis essentially meaningless. In this section I will argue that the coalescent is 

the appropriate null model. I will begin by briefly discussing the models commonly 

used in the epidemiology of microparasites then I will formally introduce the 

coalescent in a metapopulation. Finally I will discuss how the two can be combined, 

providing an integrated approach for modelling the evolution of microparasites. 

 

1.4.1 Epidemiological models 

Anderson and May (1991) review the staple differential equation models used for 

microparasites. These models are endlessly adaptable, so I will concentrate on the two 

most fundamental models that are in common usage. The SIS (susceptible-infectious-
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susceptible) model is appropriate for microparasites that either (i) induce no 

immunity, or, (ii) cannot be cleared and remain infectious.  The SIRS (susceptible-

infectious-refractory-susceptible) model is appropriate for microparasites that do 

induce immunity, either temporary or life-long. 

 

1.4.1.1 SIS 

 

The host population is grouped into a proportion I that is infected and a proportion S 

that is susceptible. Susceptible individuals become infected at a rate � , which is 

proportional to the prevalence of infectious individuals, offset by a transmission 

coefficient � . The magnitude of �  reflects the transmissibility of the organism. 

Assuming that the per capita force of infection, � , is proportional to the density of 

infectious individuals is known as strong homogenous mixing. The alternative 

assumption that �  is independent of I is known as weak homogenous mixing. Here I 

will assume strong homogenous mixing, so that Iβλ = . Infected individuals clear the 

infection and return to the susceptible class at rate � . γ1  is the average duration of 

infection. 

 

The changes in the proportion of infectious individuals over time, t, can be expressed 

as a differential equation. 

S I 
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 IIS
t

I γβ −=
d

d
. 

Normally it is the equilibrium state of the model that is of interest, unless the 

emergence of a new infectious agent is being modelled (e.g. Pybus 2001). At 

equilibrium, the rate of change of I with respect to t is zero, so 

 
β
γ−= 1*I , 

where an asterisk indicates the equilibrium frequency. The basic reproductive number 

R0 is defined as the average number of secondary infections caused by a single 

primary infection in a totally susceptible population. This number is relevant because 

unless 10 ≥R  the infection will go extinct. A simple relationship is 

 
0

* 1
11

R
S −=− , (1) 

(Anderson and May 1991) implying that γβ=0R . Therefore, for the infection to 

persist, γβ > . From these equations it is apparent that the dynamics of the model 

depend on the product of the transmission coefficient and the duration of infection. 

 

The SIS model, as stated here, is equivalent to the SI (susceptible-infectious) model 

(in which the infection cannot be cleared), in which case γ1  is the life expectancy of 

the host. Because the host population size is assumed to remain constant, the 

susceptible class is replenished with births at a rate equal to the mortality rate � . A 

model including clearance of infection and births/deaths is straightforward, but is 

closely approximated by the SIS model when the life expectancy of the host is much 

greater than the average duration of infection. 
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1.4.1.2 SIRS 

 

SIRS can be used to model disease that induces natural immunity, such as 

meningococcal disease. In addition to the susceptible and infectious class of the SIS 

model, a proportion R of the host population is refractory, and immune to reinfection. 

Infectiousness is lost at rate � , and immunity is lost at rate � . Class Z is the proportion 

of the host population infectious or immune. σ/1  is the average duration of 

infectivity. γ/1  is the average duration of immunity, or analogously, in an SIR 

(susceptible-infectious-refractory) model (where immunity is life-long) host life 

expectancy. A model containing host mortality and loss of infectiousness is very close 

to the SIRS model when host life expectancy greatly exceeds average duration of 

immunity. 

 

The model can be represented by the differential equations 
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which can be solved to give βσ /* =S , 
( )

βσ
σβγ −=*I , βσ /1* −=Z  and, using 

Equation 1, σβ /0 =R . For the infection to persist in the host population, σβ > . 
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The dynamics of this model depend principally on the product of the transmission 

coefficient and the duration of infectiousness, rather than the duration of immunity. 

 

1.4.2 Metapopulations and the coalescent 

1.4.2.1 The coalescent 

The coalescent is a description of the ancestral history, or genealogy, of a random 

sample from a population that is evolving according to the standard neutral model 

(see section 1.2.4.1). In the standard neutral model the population has a constant size, 

and individuals reproduce with equal vigour. In its original formulation (Kingman 

1982a, 1982b) the coalescent models the genealogy of n genes sampled from a non-

recombining population of size N individuals, where it is assumed that N is large 

(formally, ∞→N ). 

 

In the standard neutral model, also known as the Wright-Fisher model (Fisher 1930; 

Wright 1931) the reproductive success of members of the current generation, 

measured in number of offspring in the subsequent generation, follows a symmetric 

multinomial distribution. The Wright-Fisher model is a model of evolution forwards-

in-time. The coalescent is a model of evolution backwards-in-time (see Nordborg 

2003 for a review). Specifically, it is a model of the evolutionary history of genes 

backwards-in-time. Suppose the ploidy of the population is P. Whereas a diploid 

organism (P = 2) normally has two parents, a particular gene in that organism’s 

genome has a single parent gene. Backwards-in-time, genes in the current generation 

choose their parent genes uniformly at random from the PN genes in the previous 

generation. From this, the waiting time until a pair of genes share an ancestor in 
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common can be found. The probability that a pair of genes have yet to find a common 

ancestor after PNt generations is 

 ,
1

1
PNt

PN
�
�

�
�
�

� −  

which, as the population size gets very large ( ∞→N )  equals approximately te− . So 

the waiting time, in units of PN generations, for the common ancestor of a pair of 

genes is exponentially distributed with rate 1. This is known as the rate of 

coalescence. For a sample of n genes there are ( ) 2/1−nn  potential coalesce events, so 

the waiting time (in units of PN generations) to the first coalescence is exponentially 

distributed with rate ( ) 2/1−nn . The chance of multiple simultaneous coalesce events 

is vanishingly small for large N. 

 

1.4.2.2 The coalescent with recombination 

Hudson (1983) described a way to simulate the genealogy of a sample of n genes in 

the presence of recombination. A genealogical tree with recombination as well as 

coalescence is no longer bifurcating, but can be a network, or graph. Griffiths and 

Marjoram (1997) provided a mathematical description of a coalescent genealogy with 

recombination, which they called the ancestral recombination graph (ARG). When 

there is recombination, the ancestral lineages not only merge together when they find 

a common ancestor, but also split apart, as a result of recombination. When there are n 

gene sequences, recombination events occur at rate 2/ρn  (per PN generations). So 

the waiting time for the next coalescence or recombination event (backwards in time) 

is exponentially distributed with rate ( )RC λλ + , where 
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and the relative probability of coalescence is 

 ( )
RC

C

λλ
λ
+

=ecoalescencPr . 

 

1.4.2.3 Coalescence in a metapopulation 

A metapopulation model (Wright 1940; Levins 1968, 1969) is a simple extension of 

the standard neutral model in which the population is subdivided into subpopulations, 

or demes. Migration occurs between the demes, and sporadically demes go extinct. In 

a model in which there are a constant number of occupied demes D, unoccupied 

demes are recolonised at the same rate that occupied demes go extinct. Wakeley and 

Aliacar (2001) show that under certain conditions, the genealogy of a sample of genes 

taken from a metapopulation is a straightforward extension of the coalescent. 
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Fundamental to the model of Wakeley and Aliacar (2001) is that there are a large 

number of (occupied) demes D, so that the sample size is much smaller than the 

number of demes (formally, ∞→D ). In addition, there can be K different types of 

deme that can differ in their population size, rates of extinction/recolonisation and 

rates of migration. Demes of type i have population size Ni, extinction/recolonisation 

rate Ei per PNi generations, and migration rate Mi per PNi generations. Note that this 

is the backwards migration rate, which means that Mi is the rate at which individuals 

migrate into deme i from other demes. When a deme of type i is recolonised, it has ki 

founders, and the deme population is instantaneously repopulated to Ni individuals. A 

proportion � i of all demes are of type i. Figure 19 illustrates the metapopulation 

model. 

 

 

Figure 19 An example of a metapopulation model with many demes. There are K = 3 types of 

deme, which may differ in their population size, extinction/recolonisation rates and migration rates. 

Individuals can move between demes by migration or recolonisation events, indicated by the 

arrows. Source: Wakeley and Aliacar (2001). 
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As a consequence of the large number of demes, the genealogy of a sample from the 

model described above is straightforward. Suppose the sample, of size n, was taken 

from d demes so that ( )dnn ,,1 �=n  describes the sample configuration, with demes 

labelled 1…d and � =
= d

i inn
1

. Wakeley and Aliacar (2001) show that the genealogy 

of this sample consists of two parts, that they call the scattering phase and the 

collecting phase (Figure 20). In the scattering phase the ancestral lineages rapidly 

 

Figure 20 The genealogy of a metapopulation is divided into the scattering phase and the collecting 

phase. In this example, 8 genes were sampled from a single deme. In the scattering phase a 

sequence of coalescence, migration and recolonisation events rapidly change the configuration of 

the ancestral lineages amongst the demes. At the end of the scattering phase there are only 3 

lineages left, each in a separate deme. During the collecting phase these coalesce according to a 

standard coalescent with an altered timescale. Source: Wakeley and Aliacar (2001). 
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coalesce, migrate or undergo recolonisation until there is a single lineage in each 

deme. Backwards-in-time, recolonisation is equivalent to coalescence if ki = 1, or to a 

combination of coalescence and migration if ki > 1. The scattering phase for deme i 

takes around PNi generations or less. The collecting phase describes the rest of the 

genealogical history, which resembles a standard coalescent genealogy but with a 

different timescale. That is to say that the collecting phase is a standard coalescent 

process with effective population size 

 ( )FEM

ND
N e +

=
2

, (2a) 

where  
EM

kE
F

++
+=
21

/1
, (2b) 

in the case of a single deme type (K = 1, subscripts for k, N, M and E suppressed) 

(Wakeley and Aliacar 2001; Wakeley 2004). F has a natural interpretation in the 

coalescent metapopulation model. It is the inbreeding coefficient, which is to say that 

it is the probability that the ancestral lineages of a pair of sequences sampled from the 

same deme coalesce during the scattering phase (Wakeley and Aliacar 2001). 

 

This separation of timescales relies on the assumption that D is much larger than N. 

When migration or recolonisation occurs, and the ancestral lineage of the migrant or 

coloniser moves to another deme (the source deme), the probability that the source 

deme is also occupied by another ancestral lineage is on the order of magnitude of 

1/D. Thus certain types of events occur with vastly different rates. 

• Fast timescale. Coalescence within demes and migration or recolonisation in 

which the source deme is unoccupied occur with rates on the order of PN 

generations. 
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• Slow timescale. Migration or recolonisation in which the source deme is 

occupied occur with rates on the order of PN/D generations, which is very 

much slower for large D. 

There are several important consequences of the separation of timescales. The 

scattering phase is so short relative to the collecting phase that if the mutation rate is 

finite in the collecting phase then no mutation events occur during the scattering 

phase. Recombination is easily incorporated into the model (Wakeley and Aliacar 

2001; Lessard and Wakeley 2004), but if the recombination rate is finite in the 

collecting phase then no recombination events occur during the scattering phase. 

When a recombination event occurs during the collecting phase, there are transiently 

two ancestral lineages in one of the demes, analogous to during the scattering phase. 

The lineages rapidly either coalesce back together again, or move to another deme 

owing to migration/recolonisation. In the case of coalescence (or recolonisation when 

k = 1), which occurs with appreciable probability, the recombination event has no 

effect on the genealogical history of the genes. As a result, the observed 

recombination rate obsρ  is lower than would be expected for a standard coalescent 

process with the specified effective population size, resulting in higher than expected 

LD: 

 ( ),1 Fobs −= ρρ  (3) 

when there is a single deme type (note that there is a typographical error in Equation 

28 of Wakeley and Aliacar 2001; John Wakeley personal communication). 
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1.4.3 Epidemiology and the coalescent 

The model of coalescence in a metapopulation is useful because it could easily 

describe a population of hosts, each of which is infected with a population of 

microparasites. 

• Each host is represented by a deme 

• The population size of a deme is the parasite load 

• Primary infection corresponds to recolonisation of a deme 

• Secondary infection corresponds to migration between demes 

• Clearance of infection corresponds to a deme extinction 

 

Of the epidemiological models discussed above, SIRS is appropriate for modelling N. 

meningitidis because it includes natural immunity. Although a simplification of the 

truth, I will show how to incorporate it into the simplest case (K = 1) of Wakeley and 

Aliacar’s (2001) metapopulation model. Doing so provides some valuable insights 

into modelling microparasites using the coalescent. The versatility of the coalescent 

metapopulation model means that incorporation of more complex epidemiological 

models, for example modelling age structure, would be straightforward (see for 

example Laporte and Charlesworth 2002). 

 

1.4.3.1 SIRS with superinfection 

Before the SIRS model can be integrated with the metapopulation model it is helpful 

to expand it slightly so as to distinguish between primary and secondary infection. In 

the metapopulation analogy, primary infection of a previously susceptible host 

corresponds to recolonisation of an unoccupied deme. Secondary infection, on the 
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other hand, corresponds to migration between occupied demes. Separating primary 

and secondary infection in this way is important, both epidemiologically because 

secondary infection may differ in its success rate, and evolutionarily because only 

recombination within multiply infected hosts leads to the emergence of allelic novelty 

and mosaic genomes. 

 

Suppose that S is the proportion of hosts that are susceptible, and R is the proportion 

of hosts that are refractory (immune), as before. The proportion of hosts that are 

singly infected is M, whilst the proportion of hosts that are co- or super-infected is C. 

.CMI +=  Each generation (which may be thought of as the average time it takes for 

the complete intra-host population of microparasites to turn over), the probability that 

a susceptible host becomes infected is given by the per-capita force of infection 1, 

where IB11 =Λ  and B1 is the transmission coefficient for primary infection 

( )10 1 << B . When a host is infected for the first time, the intra-host parasite 

population is assumed to immediately attain its carrying capacity NP. It is assumed 

that primary infection results from a single founding genotype. The probability that an 

infected host (be it singly or multiply infected) is reinfected is given by the per-capita 

force of secondary infection 2, where IB22 =Λ , and B2 is the transmission 

coefficient for secondary infection ( )10 2 << B . When a host is reinfected, it is 

assumed that a single parasite genotype enters the intra-host population at initial 

frequency PN/1 . Infected hosts (be it single or multiply infected) become refractory 

with probability  per generation ( )10 <Σ< . Refractory hosts lose immunity and 

become susceptible once more with probability  per generation ( )10 <Γ< . 
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It is assumed that NP is large, and the epidemiological parameters B1, B2,  and  are 

small so that in the limit as ∞→PN , 

 ,lim 11 BPN P
NP ∞→

=β  

 ,lim 22 BPN P
NP ∞→

=β  

 ,lim Γ=
∞→ P

N
PN

P

γ  

and Σ=
∞→ P

N
PN

P

limσ  

are finite, where P is the ploidy of the parasite. The host population size NH is 

assumed to be sufficiently large that the rate of change of the proportion of 

susceptible, singly infected, multiply infected and refractory individuals can be 

described deterministically by the differential equations 
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where time t is measured in units of PNP generations. In units of PNP generations, the 

per capita forces of primary and secondary infection are I11 βλ =  and I22 βλ =  

respectively. 

 

1.4.3.2 Metapopulation with SIRS 

Whereas in a standard metapopulation model the number of demes is usually assumed 

to be independent and fixed, in the SIRS metapopulation model the number of demes 

is dynamic, and dependent upon the epidemiological parameters. To integrate the 

SIRS model and the metapopulation model, I will assume that infection rates are at 

equilibrium in the host population. It is possible to use the SIRS model to model the 

emergence of the microparasite in the metapopulation. The number of infected hosts, 

which corresponds to the number of demes, can be found by solving the differential 

equations under equilibrium conditions. At equilibrium, a proportion 1
* / βσ=S  of 

hosts are susceptible, so σβ /10 =R  from Equation 1. For the microparasite to persist 

in the host population, R0 must be greater than one, so � 1 > � . The equilibrium 

frequency of infected hosts is 
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γσ
γ

γσβ
σβγ

, (4) 

which means that for a host population of size NH, there will be HNI *  infected hosts. 

This is analogous to HNID *=  occupied demes in the metapopulation. The relative 

frequency of multiple to single infection is given by 
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This tends to zero for small � 2, and tends to 1 for large � 2. 
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In the SIRS metapopulation model, the duration of infectiousness is σ/1 , regardless 

of whether hosts are singly or multiply infected. At equilibrium, ∗= S1βσ  because 

 0
d

d
1 =−= ∗∗∗ ISI

t

I σβ . 

So the rate at which demes (hosts) are recolonised (suffer primary infection) and go 

extinct (clear infection) occurs at rate ∗= SE 1β  per PNP generations. Similarly, the 

rate at which demes (hosts) experience immigration (secondary infection) occurs at 

rate ∗= IM 2β . Therefore using Equation 2, the effective population size of the 

collecting phase for the SIRS metapopulation model is 

 ( )FSI

NIN
N HP

e ∗∗

∗

+
=

122 ββ
, (5a) 

where ∗∗
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++
+

=
SI

S
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12
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21

1

ββ
β

. (5b) 

 

It is interesting to remark that, whereas the genealogy of the SIRS metapopulation is 

straightforward (a coalescent process with an altered timescale, with a correction for 

the sample configuration), the effective population size for the genealogy is a 

complex function of the epidemiological parameters, with little hope to disentangle 

them. However, the inbreeding coefficient itself, F, which might be thought of more 

as a population genetic parameter than an epidemiological parameter, could be 

estimated from the data. Supposing mutations occur at rate � /2 per site per PNe 

generations according to the infinite sites model (Watterson 1975), then for a pair of 

sequences of length L sampled from different demes, the expected number of pairwise 

differences is 
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 ( ) LE T θπ = . 

For a pair of sequences sampled at random from the population, the expectation is the 

same because for a large number of demes, a truly random sample has zero 

probability of sampling the same deme twice. For a pair of sequences sampled from 

the same deme, the expected number of pairwise differences is 
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because for �  to be finite on the timescale of the collecting phase (Ne) it must be zero 

on the timescale of the scattering phase. As a result, the only source of variation 

within a deme must be multiple infection. This is an important implication of the 

model. A moment estimator of the inbreeding coefficient would be 

 
T

iTF
π

ππ −
=ˆ , 

where iπ  and Tπ  are the observed average number of pairwise differences within and 

between demes respectively. 

 

There are many simplifications in a SIRS model; however it is useful to see how such 

an epidemiological model can be integrated into a population genetics framework, and 

how the key parameters of the two models relate to one another. Patterns of genetic 

diversity in microparasite populations can potentially reveal a great deal about the 

evolutionary history of the population, so it is important to appreciate the relationship 

between, for example, prevalence and effective population size. The SIRS 

metapopulation model introduced here results in a straightforward genealogical 

model, but the relationship between prevalence and effective population size is not 

linear, which suggests that some thought is needed before inferring changes in 

parasite prevalence over time directly from genetic data. There are other important 
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insights from the model, such as the relationship between the observable rate of 

recombination in a sample of sequences and the rate of recombination within a host. 

This insight might help reconcile molecular genetic and population genetic estimates 

of the recombination rate in microparasites. The relationship between observable and 

actual rates of recombination is investigated further in section 2.2.2. That within-host 

variation can only be explained by multiple infection in the SIRS metapopulation 

model is another important insight. Obviously such a result depends on the 

assumptions of the model, and if the data appear to contradict this prediction, that says 

something interesting about the validity of the model. Finally, it is significant that the 

simple SIRS model, the appropriate null model in an epidemiological setting, gives 

rise to a simple coalescent model, suggesting that the coalescent is the appropriate 

null model for the population genetics of microparasites. What is more is that the 

versatility of Wakeley and Aliacar’s (2001) model of coalescence in a metapopulation 

means that more complex epidemiological models can be integrated into a population 

genetics framework. 

 


