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Chapter 2 

Population genetics of Neisseria meningitidis 

 

As population studies of Neisseria meningitidis have become more numerous and 

technological developments such as nucleotide sequencing have provided greater 

resolution for characterising the genetic diversity in those studies, the view of 

meningococcal biology has itself evolved from a model of clonal descent with a 

subsidiary role for recombination to a model of a highly recombining population in 

which high levels of linkage disequilibrium (LD) persist despite frequent horizontal 

gene transfer. This shift in opinion has been facilitated by applying a variety of 

mathematical modelling techniques to genetic data. Analysis based on the purely 

verbal epidemic clone model of Maynard Smith et al. (1993) is post hoc in the sense 

that it relies on the identification of clonal complexes using UPGMA trees. Feil et al. 

(1999) count the number of historic mutation and recombination events in an ad hoc 

manner based on observable patterns of genetic mosaicism. Gupta et al. (1996) and 

Holmes et al. (1999) utilise more coherent statistical models; however, these are 

disparate and do not share a common thread. For example, the � 2 test of Gupta et al. 

(1996) rejects a null model of linkage equilibrium. Linkage equilibrium might be 

rejected even in a neutrally evolving, panmictic population because of random drift. 

Holmes et al. (1999) rejected two null models, one of complete linkage disequilibrium 

and one of linkage equilibrium within a gene. While these phylogenetic tests together 

establish that recombination occurs at intermediate levels in meningococci, the non-

parametric nature of the tests means that the actual rate has not been satisfactorily 

quantified. 
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Using the coalescent to model the ancestral history of recombining genes offers a 

coherent approach to evolutionary inference. In the previous chapter I argued that the 

coalescent is an appropriate starting point for modelling the ancestral history of 

microparasites, where the effective population size is a complex function of the 

epidemiological rates of transmission and duration of infection. In this chapter I will 

test to see whether the coalescent model is an adequate description of meningococcal 

evolution using housekeeping genes that were sequenced from commensal 

meningococci in a population of healthy carriers. Two methods of inference are used 

for fitting the coalescent to N. meningitidis, and their respective merits and 

conclusions are compared. Model adequacy is evaluated by estimating parameters and 

performing goodness-of-fit tests. By investigating the way in which the model is a 

poor fit to the data, the standard coalescent can be refined, and in Chapter 3 I 

investigate the importance of population structure on patterns of genetic diversity in 

meningococci. 

 

2.1 Description of a carriage population 

As discussed in Chapter 1, meningococcal carriage rates are on the order of 10% of 

the population at large, whereas the rate of disease is closer to 5 persons per 100,000, 

several orders of magnitude lower. As a result it has been recognised that the 

overwhelming transmission of N. meningitidis occurs between asymptomatic carriers. 

Samples collected from hospitals and health laboratories comprise, usually solely, of 

disease-causing meningococci, which represent a minor fraction of all meningococci. 

Thus carriage studies are extremely important for understanding the normal 
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transmission cycles of meningococci, and from there the circumstances that lead to 

invasive disease. In this chapter, 217 isolates collected from healthy young adults in 

the Czech Republic in 1993 (Jolley et al. 2000) are analysed. The isolates were taken 

from throat swab specimens of 1,400 individuals aged 15 to 24 from nine main 

sampling locations consisting of schools and workplaces in Prague, �eské 

Budejovice, Hradec Králové, Kutna Hora, Plze�, Olomouc and Opava. All the 

individuals were healthy with no known contact to patients with invasive disease. The 

carriage rate was 11.1%. Fragments of seven housekeeping genes were sequenced for 

MLST (abcZ, adk, aroE, fumC, gdh, pdhC and pgm; see Chapter 1), and these are 

analysed here. 

 

The coalescent is a useful guide to quantifying patterns of genetic variation because 

under the standard neutral model certain statistics are natural summaries of the data. 

Under simple mutation models, such as the infinite sites (Watterson 1975) and infinite 

alleles (Kimura 1968) model, particular summaries of patterns of genetic diversity are 

related in a direct way to evolutionary parameters such as the mutation rate and 

recombination rate. In this section, those summaries are used to gain a precursory 

understanding of the evolution of meningococcal populations before likelihood-based 

statistical inference is performed explicitly. 

 

2.1.1 Diversity 

In the coalescent (Kingman 1982a,b) the time to the most recent common ancestor 

(mrca) for a pair of sequences is exponentially distributed with rate 1 in units of PNe 

generations, where P is the ploidy (P = 1 for haploids) and Ne is the effective 

population size. The simplest model of mutation is the infinite sites model (Watterson 
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1975) in which a locus of length L undergoes mutation at rate L � /2 per PNe 

generations. The parameter �  is related to the mutation rate per generation, � , by 

 µθ ePN2= . 

The number of mutation events in t PNe generations is Poisson distributed with mean 

L � t/2, so the average number of mutations that occur in the genealogy of a pair of 

sequences is L � . Under the model there are an infinite number of potential sites that 

undergo mutation, so all mutation events are observed. As a result, the expected 

number of pairwise differences between a pair of sequences i and j is 

 ( ) θπ LE ij = . (1) 

Therefore, the average number of pairwise differences in a sample of size n,  
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is a natural summary of diversity because Equation 1 implies that ( ) θπ LE = . A 

commonly-used moment estimate for the mutation parameter is L/ˆ πθπ = . 

 

The number of segregating sites is another natural summary because in the infinite 

sites model each mutation results in a new segregating site. The expected sum of 

branch lengths, T, for the genealogy of n sequences is 
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in units of PNe generations. This is known as the Watterson constant, and was 

originally calculated for a sample taken from a population evolving according to the 

standard neutral model by Watterson (1975). The expected number of segregating 

sites S for a sequence of length L is 
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because the number of segregating sites equals the number of mutation events, which 

is Poisson distributed with expectation linear in T. Equation 3 suggests a second 

moment estimate for the mutation parameter ( )�
−

=
= 1

1
/1/ˆ n

kS kLSθ . This is known as 

Watterson’s estimate of the mutation rate. 

 

Table 1 Meningococcal diversity 

Locus L π  S 310ˆ ×πθ  310ˆ ×Sθ  

abcZ 433 19.6 75 45.2 29.1 

adk 465 4.07 25 8.76 9.02 

aroE 490 32.9 135 67.2 46.2 

fumC 465 9.11 48 19.6 17.3 

gdh 501 7.13 26 14.2 8.71 

pdhC 480 22.9 83 47.7 29.0 

pgm 450 20.1 81 44.6 30.2 

Total 3284 115.8 473 35.3 24.2 

 

Table 1 shows that there is considerable heterogeneity in diversity between 

housekeeping loci, ranging from π  = 4.07, S = 25 for adk up to π  = 32.9, S = 135 for 

aroE. The two measures of diversity π  and S give a similar account of diversity in 

the housekeeping genes, and provide comparable estimates of the mutation parameter 

�
, ranging from 0.00876 for adk to 0.0672 for aroE. Across loci, the average 

proportion of sites that differ between sequences is 3.5%, and 14% of sites are 
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segregating. The Watterson estimate of �  is 0.0242 per site for the concatenated 

sequence. 

 

The diversity of these housekeeping genes is of the same order of magnitude as that 

observed in other prokaryotes (Figure 1), which is considerably larger than for 

unicellular eukaryotes, and more so for multicellular eukaryotes. In general there is an 

inverse relationship between �  and organism size (Lynch and Conery 2003). The 

estimates of �  in Figure 1 are for synonymous changes only, in an attempt to estimate 

the neutral mutation rate. Therefore, the estimate of �  = 0.08 for N. meningitidis 

 

Figure 1 Estimates of the population mutation rate � /P for different taxa. Source: Lynch and 

Conery (2003). 
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(Figure 1) is higher than that observed here, presumably because of functional 

constraint in the housekeeping genes. Lynch and Conery’s estimate is based on 11 

sequences of housekeeping genes from a collection of 107 isolates representing global 

disease (Maiden et al. 1998). 

 

2.1.2 Frequency distributions 

In the coalescent with infinite sites mutation, the expected number of mutations � i that 

reach abundance i ( 1,,2,1 −= ni � ) is ( ) iE i /θη =  (Fu 1996). In a real data set it is 

not usually possible to determine whether a particular allele is derived or ancestral, so 

it is necessary to take the folded distribution, 

 ( ) ( )iniE ini −+=+ − // θθηη , 

Figure 2 Observed distribution of minor allele count across biallelic segregating sites. In both 

figures the red line indicates the neutral expectation. Left: plot of the number of sites with a given 

minor allele count. Right: plot of the cumulative number of sites with a given minor allele count. 
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where i ( )2/,,2,1 ni �=  is the count of the less frequent allele (the minor allele) for a 

biallelic site; in the infinite sites model, segregating sites can only be biallelic. Figure 

2 shows the observed frequency distribution of minor alleles, aggregated over biallelic 

sites at all seven loci (left hand graph, black line). In total there were 456 biallelic 

sites. The red line indicates the neutral expectation, using the Watterson estimate of � . 

Because of the small number of sites involved, it is difficult to assess whether there is 

any deviation from the neutral expectation. In the right hand graph, the observed 

cumulative distribution for the number of sites with a given minor allele is plotted 

(black line), with the neutral expectation (red line). It is clear that there is a dearth of 

sites with a small minor allele count. That is to say that there is an excess of sites with 

intermediate frequency alleles. Such a pattern might be caused by ascertainment bias 

when choosing the seven MLST loci to type, if loci with high diversity were 

preferred. The effect of ascertainment depends on the size of the sample used for 

ascertainment. That 109 meningococcal isolates were used to choose the MLST loci, 

and loci with intermediate rather than high diversity were preferred suggests that the 

observed excess of intermediate frequency alleles is not readily explained by 

ascertainment bias (Urwin and Maiden 2003). An alternative explanation for an 

excess of intermediate frequency alleles is ancestral population structure, which is 

investigated in more detail in section 2.2.4 and Chapter 3. 

 

Rather than report the average diversity between pairs of sequences, the whole 

distribution of pairwise differences can be plotted to demonstrate the degree of 

genetic clustering in a population. In a clonal population, a deep branch at the root of 

the evolutionary tree that partitions the population into k and ( )kn −  individuals 

respectively will cause a bi-modal distribution because the 22 CC knk −+  pairwise 
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comparisons within each partition will exhibit fewer differences than the ( )knk −  

pairwise comparisons across the root-branch partition. In a recombining population 

the bimodality may be less pronounced because shifts in the topology of the 

evolutionary tree along the sequence cause the population to be partitioned differently 

at different parts of the sequence. In the extreme case of linkage equilibrium, the 

distribution would be binomial, which is unimodal. On the other hand, strong 

population structure might maintain a deep partition in spite of recombination. 

 

Figure 3 shows the mismatch distributions for the Czech carriage study, plotted as a 

histogram of the pairwise number of nucleotide differences (left hand graph) and a bar 

chart of the pairwise number of allele differences (right hand graph). The nucleotide 

mismatch distribution is bi-modal, with a peak at zero and a peak near 120, indicating 

that there is some genetic clustering of individuals, whether it be caused by limited 

 

Figure 3 Mismatch distributions for isolates sequenced at the seven MLST loci. Left: histogram of the number of 

nucleotide differences between pairs of isolates, out of 3284 bp in total. Right: bar chart of the number of allele 

differences between pairs of isolates, out of 7 loci. 
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recombination or population structure. Likewise, the allelic mismatch distribution is 

bimodal, with peaks at the extreme values of zero and 7. In agreement with previous 

work (Holmes et al. 1999), these graphs demonstrate that whatever the rate of 

recombination may be in this population of meningococci, it is not sufficiently high to 

obliterate genetic structuring. 

 

2.1.3 Recombination 

Coalescent theory tells us that the variance in the number of pairwise differences is 

sensitive to the rate of recombination in a standard neutral model. Specifically, 

 ( ) ( ) ( ) 2,
13

1 θρθπ nf
n

n
V +�

�

�
�
�

�

−
+= , (4) 

where ( )nf ,ρ  is a function of the recombination rate and sample size (Wakeley 

1997). Hudson (1987) and Wakeley (1997) have exploited this relationship to obtain 

Table 2 Recombination-sensitive statistics 

Locus ( )πV  Rm ( )dr ,cor 2  ( )dD ,cor ′  ( )dG ,4cor  

abcZ 132.7 10 -0.235 -0.329 -0.332 

adk 7.2 3 -0.216 -0.104 -0.151 

aroE 657.5 19 -0.434 -0.095 -0.061 

fumC 27.8 12 -0.111 -0.164 -0.116 

gdh 20.6 5 -0.251 -0.316 -0.264 

pdhC 193.4 14 -0.255 -0.139 -0.091 

pgm 144.9 9 -0.373 -0.030 -0.008 
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moment estimators of the recombination rate, similar to those in section 2.1.1, but less 

simple. The observed variance in the number of pairwise differences, shown for each 

locus in Table 2, ranges from 7.2 for adk up to 657.5 for aroE. In fact sorting the loci 

by the magnitude of ( )πV  produces exactly the same ordering as sorting the loci by 

the magnitude of π . 

 

Amongst other things, recombination causes genetic incompatibilities in an alignment 

of nucleotide sequences. For two biallelic loci A and B there are four possible 

haplotypes: AB, Ab, aB and ab. Under the infinite sites model with no recombination, 

it is impossible to observe all four haplotypes in a sample of sequences. Such a 

scenario is called a genetic incompatibility, because the data are incompatible with the 

genetic model. Incompatibility can be caused by violation of either the mutation 

model (recurrent mutation can cause all four haplotypes to arise) or the assumption of 

no recombination (a shift in topology can allow all four haplotypes to arise). When 

the mutation rate is low, the infinite sites model is a reasonable approximation, and 

genetic incompatibility is indicative of recombination. Several authors (Hudson and 

Kaplan 1985; Myers and Griffiths 2003) have used the number of genetic 

incompatibilities to estimate a lower bound on the number of recombination events in 

the ancestral history of the sequences under an infinite sites model. Their estimators 

are known as Rm and Rh respectively. Whilst the lower bound on the number of 

recombination events in a finite sites model (where recurrent mutation is allowed) 

must always be zero, Rm or Rh can be used nonetheless as a statistic that is sensitive to 

the recombination rate. 
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Whilst it is true that Rh is a more efficient lower bound than Rm in the sense that 

mh RR ≥  under the infinite sites model (Myers and Griffiths 2003), the former is 

considerably more computationally intensive because it involves an optimisation step, 

and for that reason using Rh is not strictly deterministic. Myers and Griffiths (2003) 

give an efficient way to calculate Rm. Define 

 
�
	

�



�

=
otherwise0

leincompatib are  and  sites if1 ji

Bij  (5) 

then ( )L
mm RR =  can be solved iteratively using 

 ( ) ( ){ }1,,2,1;max −=+= jiBRR ij
i

m
j

m �  

and the boundary condition ( ) 01 =mR . I calculated Rm for each locus; the values are 

displayed in Table 2. The lowest value of Rm was 3 for adk, and the highest was 19 for 

aroE. This reflects the extreme status of these two loci for the other measures of 

diversity and recombination. However, sorting the loci by the magnitude of Rm does 

not produce exactly the same order as sorting them for ( )πV . 

 

Recombination causes a breakdown in linkage disequilibrium (LD) along the 

sequence. There are various ways to measure LD between a pair of sites. A natural 

measure is to take the difference between the observed haplotype frequency and that 

expected under linkage equilibrium. Take, for example, two biallelic loci A and B, as 

before. The LD for haplotype AB can be expressed as 

 BAABAB fffD −= , (6) 

where f is the observed frequency of the haplotype or allele. In this simple example, 

( ) ( )aBAbabAB DDDD =−== . The expectation of D is zero under linkage equilibrium. 

For a pair of biallelic loci, Equation 6 can be interpreted as a covariance in allele 
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frequencies. A natural way to compare LD from different pairs of biallelic loci is to 

standardise this covariance, i.e. calculate the correlation coefficient 

 
( ) ( )BBAA
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ffff

fff
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−−
−

=
11

, (7) 

or, to remove the arbitrary sign, r2 (Hill and Robertson 1968). Even under complete 

linkage, r2 can only equal one if the allele frequencies are the same. To overcome the 

problem, Lewontin (1964) introduced D′ , which scales the covariance by its 

theoretical maximum given fA and fB. 
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Figure 4 Breakdown in linkage disequilibrium, as measured by r2, with physical distance in each of 

seven housekeeping loci from the Czech carriage study. 
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To quantify the breakdown in LD along a sequence, one can look for a decrease in r2 

or D′  with increasing physical distance. Figure 4 illustrates the decay in r2 with 

physical distance for each of the seven housekeeping loci. Each data point 

corresponds to a pair of sites. The decay in LD can be quantified as the correlation 

between the LD statistic and physical distance, d. In the presence of recombination, 

LD is expected to decrease as physical distance increases, so the correlation 

coefficient should be negative. 

 

Table 2 displays the correlation between LD and distance for both r2 and D′ . A third 

LD statistic, G4, is also used, which corresponds to the four-gamete test of Hudson 

and Kaplan (1985). G4 is defined as ( )ijB−1  for a pair of sites i and j (see Equation 

5); it equals zero if there is a genetic incompatibility and one otherwise. 

Incompatibility is expected to increase with distance in the presence of 

recombination; therefore G4 should also show a negative correlation with distance. 

For all three correlation coefficients in Table 2, the stronger the correlation, the 

stronger the relationship is between LD and distance. All three correlation coefficients 

show broadly the same pattern: a negative correlation indicative of recombination. 

Sorting the loci by the magnitude of the correlation, ( )dD ,cor ′  and ( )dG ,4cor  produce 

the same order with abcZ exhibiting the strongest relationship between LD and 

distance, and pgm the weakest. This pattern differs, however, from that presented by 

( )dr ,cor 2 , for which aroE shows the strongest correlation and fumC the weakest, and 

the other recombination-sensitive statistics. These differences may amount to the 

relative sensitivity of the statistics to the mutation rate, of which each is necessarily 

also a function. To learn more about the evolutionary parameters for these loci and 
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assess the adequacy of any particular model, it is necessary to fit a statistical model 

formally to the data. 

 

2.2 Fitting the standard neutral model 

The purpose of fitting a statistical model to genetic data, as opposed to a purely 

descriptive analysis, is (i) to obtain estimates of the parameters which are presumably 

of some evolutionary relevance, and (ii) to challenge the model by exploring its 

deficiencies and in so doing refine our understanding of the process of evolution that 

underlies the data. For all the elegance of the standard neutral coalescent, the ease 

with which results can be obtained for various quantities of interest and the efficiency 

of simulation (see section 2.2.3), performing likelihood-based inference under the 

coalescent is not straightforward. No analytic expressions exist for the likelihood of a 

sample of gene sequences, or haplotypes H, under the coalescent. Therefore the 

likelihood must be evaluated numerically. 

 

The likelihood of H can be computed with reference to a given genealogy, or set of 

genealogies, G. In principal, the likelihood might be calculated from 

 ( ) ( ) ( ) ,d,|| � Θ=Θ GGPGPP HH  

where ( )Θ|HP  is the likelihood of the parameters  given the data H, ( )GP  is the 

probability of the genealogy, specified by the coalescent, and ( )GP ,| ΘH  is the 

conditional likelihood of the data given the genealogy, obtained using the pruning 
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algorithm (Felsenstein 1981) for a finite sites mutation model1. In practice, the 

integral needs computing numerically, and a naïve approach would be to calculate 

 ( ) ( )( )�
=

Θ≈Θ
M

i

iGP
M

P
1

,|
1

| HH , 

for large M, where G(i) is simulated from ( )GP . However, for the coalescent this 

method is not feasible because almost all trees will contribute a negligible amount to 

the sum. Only once in a million draws might the conditional likelihood contribute 

significantly (Stephens 2003). Various techniques have been employed in an attempt 

to solve this problem (discussed further in Chapter 4). Amongst these is the composite 

likelihood approach (Hudson 2001; McVean et al. 2002), which has been used to 

estimate recombination rates in N. meningitidis. 

 

2.2.1 Composite likelihood inference 

This approach relies on approximating the likelihood as the product over all pairs of 

columns in the alignment  

 ( ) ( )∏ Θ≈Θ ⋅⋅
ji

jiPP
,

|,| HHH , (9) 

where i⋅H  represents the n sequences at the ith column in the alignment. To simplify 

matters further, McVean et al. (2002) assume that the mutation rate is known, using 

an estimate that is modified to allow for finite-sites mutation 

 
( ) ( )
�

−

=

−−=
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1
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k
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SLLθ , 

                                                 

1 Strictly speaking, the likelihood function L(� ) is defined to be proportional to the conditional 

probability density function P(H|� ). However, I have used likelihood synonymously for L(� ) and 

P(H|� ). 
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and only biallelic sites are used for inference. The recombination rate rPN e2=ρ  is 

estimated by assuming that the rate of recombination between a pair of sites separated 

by dij nucleotides is 

 ijij rdr = . 

In N. meningitidis, homologous recombination occurs by donor-recipient style 

transformation in which a fragment of naked DNA is endocytosed by the cell from the 

environment and incorporated into the recipient’s genome (Lorenz and Wackernagel 

1994). The fragment length of the recombinant DNA tract can be modelled as 

exponential with mean t  (Wiuf and Hein 2000). In such a model, only recombination 

events that have one, but not both, breakpoints between a pair of loci affect the 

linkage of the loci. As a result, the effective rate of recombination between loci i and j 

separated by distance dij is 
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where 2/r  is the rate of initiation of recombination per bp per generation, u is the 

position at which recombination is initiated, ( ){ } ( ){ }tudtu ij /exp/exp −−−−−  is the 

probability that the tract terminates between loci i and j if it initiates outwith, and 

( ){ }tud ij /exp −−  is the probability that the tract length is longer than ( )udij −  if it 

initiates between them. For loci separated by much less than t , the rate is 

approximated by 

 { }( ) ijij rdtdtr =−− /exp1 , (11) 

because for 1<<x , 

 { } xx ≈−− exp1 . 

For loci that are weakly linked, the effective rate of recombination is 
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 { }( ) trtdtr ij
tdij

=−−
∞→

/exp1lim
/

. (12) 

Thus estimates of recombination between pairs of distant loci can be contrasted to 

estimates between pairs of proximate loci, and the tract length estimated. 

 

By using only biallelic loci, the nucleotides can be converted from A, G, C and T into 

0 and 1, where 0 represents the rare allele. For a pair of biallelic loci there are a 

possible 

 
( )( ) ( )( )

2

21

6

41
1

+−++−++ NNNNN
N  

unordered, unlabelled, exchangeable sample configurations, where 2/nN = . 

( )Θ⋅⋅ |, jiP HH  can be calculated for any given rij using the importance sampler of 

Fearnhead and Donnelly (2001), and the computation proceeds by calculating this 

pairwise likelihood for a finite number of values of rij, which is then stored in a look-

up table. A single value of �  is used in generating the look-up table. Whilst the 

importance sampling step is extremely computationally intensive and increasingly so 

for increasing sample size n, the computation of the composite likelihood (Equation 

9) is rapid. Maximum likelihood estimates of �  can then be obtained using the 

interpolated composite likelihood curve. The method is implemented in the package 

LDhat (available from http://www.stats.ox.ac.uk/~mcvean). 
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2.2.2 Parameter estimates 

The method was applied to three meningococcal datasets, including the Czech 

carriage study2. The other two datasets comprised a previously unpublished collection 

of 53 disease-causing isolates sampled from the Czech Republic during 1993 (Jolley 

et al. 2005), and a collection of 107 disease causing isolates representing global 

diversity (Maiden et al. 1998). Because the computation time of the composite 

likelihood method increases disproportionately with the number of sequences, several 

                                                 

2 Parameter estimates using LDhat were obtained by Gil McVean, and have been published: 

K.A. Jolley, D.J. Wilson, P. Kriz, G. McVean and M.C.J. Maiden (2005) The influence of mutation, 

recombination, population history, and selection on patterns of genetic diversity in Neisseria 

meningitidis. Molecular Biology and Evolution 22: 562-569. 

Table 3 Composite likelihood estimates of recombination and mutation rates2 

  310ˆ ×Mcθ     310ˆ ×ρ   

Locus Czech Czech Global  Czech Czech Global 

 Carriage Disease Disease  Carriage Disease Disease 

abcZ 36.0 33.5 36.7  19.2 7.5 8.1 

adk 6.8 8.7 7.2  12.4 5.4 2.7 

aroE 61.2 80.5 79.9  9.7 2.6 6.2 

fumC 18.3 18.8 16.5  23.2 34.0 23.2 

gdh 10.3 11.7 11.1  17.6 31.1 13.0 

pdhC 35.7 34.2 35.2  22.5 8.9 17.8 

pgm 38.3 33.2 33.7  16.8 6.7 22.9 

 



 

 100 

random samples of 100 sequences were taken from the Czech carriage and disease 

collections for analysis, and the results averaged. The estimates of the mutation and 

recombination rates are shown in Table 3. 

 

For the Czech carriage study, the estimates of the mutation rate �  are very close to the 

Watterson estimates ( Sθ̂ , Table 1). Except for adk, Mcθ̂  is higher than Sθ̂ , reflecting 

that fact that in a finite sites mutation model the sequences become saturated with 

mutations so the estimate based on an infinite sites assumption is downwardly biased. 

There is no obvious relationship between the estimates of the recombination rate and 

the summary statistics presented in Table 2, partly because these statistics are also 

sensitive to the mutation rate. In contrast to the mutation rates, which are lowest for 

adk and highest for aroE, aroE exhibits the lowest recombination rate (0.0097) and 

fumC the highest (0.0232). Interestingly, the relative mutation and recombination 

rates appear to be generally conserved between carriage and disease collections, 

which is reassuring from the perspective of measuring parameters that are 

evolutionarily meaningful. Overall, the mutation rates were comparable between 

carriage and disease collections, but the rate of recombination was diminished in 

disease-causing isolates for four of the seven loci. 

 

By calculating a composite likelihood for pair of sites at different loci, a 

recombination rate of trPN e2  (see Equation 12) was estimated at 28.2. By 

calculating a composite likelihood for all loci using only pairs of sites at the same 

locus, a recombination rate of rPN e2  (see Equation 11) was estimated at 0.0256. 

Therefore the mean tract length t  was estimated to be 1,100 bp. 
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Obtaining estimates of the mutation and recombination rate using a statistical (albeit 

approximate) model and performing inference using established techniques allows the 

relative contribution of recombination to mutation, r/�  to be quantified by taking 

 
µθ

ρ
e

e

PN

rPN

2

2
= . (13) 

The estimates are shown in Table 4, which range from 0.16 for aroE to 1.83 for adk in 

the Czech carriage study. The ranges are not dissimilar for the other isolate 

collections. Across loci, the rate of mutation and the rate of recombination appear to 

be broadly of the same order of magnitude. Note that r/�  is actually twice the relative 

rate at which recombination events occur (r/2) to mutation (� ). 

 

Table 4 Relative importance of recombination and mutation2 

 θρ /  
 Relative rate of 

diversification 

Locus Czech Czech Global  Czech 

 Carriage Disease Disease  Carriage 

abcZ 0.53 0.23 0.22  13.3 

adk 1.83 0.62 0.38  8.8 

aroE 0.16 0.03 0.08  5.9 

fumC 1.27 1.81 1.41  13.7 

gdh 1.70 2.66 1.17  13.4 

pdhC 0.63 0.26 0.51  16.5 

pgm 0.44 0.20 0.68  10.8 
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The evolutionary significance of the relative rates of recombination and mutation 

depend more upon the rates at which each process causes genetic diversification, 

rather than their underlying rates of incidence. For every recombination event, an 

average of 1,100 bp is affected, which is a much greater number of sites than a point 

mutation affects. Of those, the proportion that will change as a result can be calculated 

using the average diversity at each locus, which is estimated using L/π  from Table 

1. Thus, the relative rate of diversification is calculated as 

 
L

t
Ltr π

θ
ρ

µ
π ××=××

2

1/2/
, (14) 

the results of which are given in Table 4 for the Czech carriage study. The relative 

rate of diversification ranges from 5.9 for aroE to 16.5 for pdhC, indicating that in 

terms of generating genetic novelty, recombination is some ten times more important 

than mutation. This is consistent with previous estimates in the (broad) range of 3.6 – 

275 (Feil et al. 1999; Jolley et al. 2000; Feil et al. 2001). 

 

Possible confusion arises from the assumption made in Equation 13 that the effective 

population size for mutation and recombination is the same. In Chapter 1 a SIRS 

metapopulation model for microparasites was used as a basis for coalescent modelling 

in N. meningitidis. In that model, the effective population size for mutation (say θN ) 

and recombination (say ρN ) differ, so that 

 ��
�

�
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�
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= ∗

∗
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S
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1
*
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1

21

1

ββ
β

θρ  (15) 

(see Chapter 1, Equations 3 and 5b), where � 1 and � 2 are the primary and secondary 

rates of infection respectively, and I* is the equilibrium prevalence of infection and S* 

the equilibrium frequency of susceptible hosts, both of which are also a function of 
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the average duration of infection and rate of loss of immunity. Note that Equation 15 

implies that θρ NN ≤ . This result suggests that the estimates of �  in Table 3, and the 

estimates of � / �  in Table 4 should be up-weighted by some unknown amount. 

However, the estimated relative rate of diversification (Table 4) does not need to be 

adjusted. In the metapopulation model, ρN  is lower than θN  because a certain 

fraction of ancestral recombination events immediately coalesce again, rather than the 

two lineages migrating to separate hosts by independent transmission events. These 

invisible recombination events have no effect on diversity, and therefore do not 

contribute to the relative rate of diversification. If the estimates of �  and � / �  were up-

weighted using Equation 15, the estimated relative rate of diversification would need 

to be correspondingly down-weighted. 

 

2.2.3 Simulating under the coalescent 

Simulating from the model has a variety of applications, including exploratory 

analyses, inference, goodness-of-fit testing and prediction. Simulating the ancestry of 

a sample of sequences under the coalescent is efficient, particularly compared to 

simulating using an individual-based Wright-Fisher model (Fisher 1930; Wright 

1931) in which the whole population is modelled. For a sample of n sequences, the 

genealogy is simulated as follows (Hudson 1990), where time is measured in units of 

PNe generations. 

1. Initially there are k = n lineages. 

2. Calculate the rates of coalescence and recombination respectively as 



 

 104 

 

( )
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1
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=

−=
 

3. Generate an exponentially distributed random variate with rate RC λλ +  for the 

waiting time until the next ancestral event. 

4. With probability ( )RCC λλλ +/  choose two lineages uniformly at random to 

coalesce, and decrement k by 1. Otherwise, choose a lineage uniformly at 

random to recombine, and increment k by 1. The recombination breakpoint is 

chosen uniformly at random along the sequence. 

5. Repeat from step 2 until k = 1. 

Because the rate of coalescence is quadratic in k and the rate of recombination is only 

linear in k, the algorithm will finish in finite time (Griffiths and Marjoram 1997). A 

particularly useful speed-up is to calculate an effective recombination rate � , which 

excludes sites in a lineage that are not ancestral to the sample, unless the non-

ancestral sites are surrounded by sites that are ancestral to the sample. Except in the 

latter case, recombination breakpoints are then not allowed to occur at non-ancestral 

sites. 

 

Having simulated the genealogical history, mutations can be superimposed using a 

finite-sites mutation model with C states. The forward-in-time transition probability 

matrix, P(t), gives the probability ( )t
ijp  of being in state j time t PNe generations after 

being in state i, and can be found by exponentiating the mutation rate matrix G such 

that 

 ( ) GP tt e=  (16) 
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(Grimmett and Stirzaker 2001). The bifurcating genealogy at a single site is known as 

the marginal genealogy. 

1. For each site, the state of the oldest node in the marginal genealogy (the mrca) 

is drawn from the stationary distribution of the mutation rate matrix, assuming 

it is ergodic. 

2. For each node that is a descendant of the current node, the state of the 

descendant is drawn from a multinomial distribution with parameters 

( ) ( ) ( )( )t
iC

t
i

t
i ppp ,,, 21 � , where i is the state of the current node and t is the length of 

the lineage connecting the nodes. 

3. Step 2 is repeated for each of the descendant nodes until the terminal nodes 

(the contemporary sample) are reached. 

 

2.2.4 Goodness-of-fit testing 

There are two good reasons for performing goodness-of-fit testing for an evolutionary 

model, which is easily implemented using coalescent simulation. The first is to ask 

the polarised question, “Does the model adequately fit the data?”  It is essential that 

any model be falsifiable, and the way to falsify a model is through goodness-of-fit 

testing. However, on the understanding that all models are deficient in some respect, 

the second purpose of goodness-of-fit testing is to ask the more pertinent question, “ In 

what way does the model fail to fit the data?”  Addressing this latter question is an 

integral part of the iterative process of refining our models, and hence our 

understanding, of evolution. It is arguably the principal role of mathematical 

modelling in biology. 
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In a maximum likelihood framework, goodness-of-fit testing can be performed by 

taking some summary statistic of the data, generating a null distribution for that 

statistic by simulating under the estimated parameters, and calculating the probability 

of observing as such an extreme value of the statistic under the model. This 

probability is usually called a p-value. Statistics are chosen that summarise some 

aspect of the data that either (i) it is important the model describes well and/or (ii) it is 

suspected the model does not describe well. Of all the statistics used to test departures 

from the standard neutral model, Tajima’s D (Tajima 1989) is perhaps the most well-

used. Tajima’s D exploits the fact that the pairwise diversity estimator πθ̂  and 

Watterson’s estimator Sθ̂  of the mutation rate use different information. Under 

neutrality, the two have equal expectation, but under various departures from the 

standard neutral model, the two will differ. Tajima’s D is normalised so that it has 

expectation zero and a variance of approximately one under the standard neutral 

model. 
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Two extreme departures from the standard neutral model can be envisaged. In the 

first, the tree is close to star-like so that coalescent events occur closer to the root than 

expected, possibly because of demographic growth or a recent selective sweep. This 
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causes an excess of low-frequency variants, so S is elevated relative to π , and D is 

negative. In the second, coalescent events occur closer to the tips than expected, 

possibly because of population subdivision causing a deep root branch. This scenario 

causes a dearth of low-frequency variants, so S is diminished relative to π , and D is 

positive. 

 

In addition to Tajima’s D, goodness-of-fit testing was conducted using the number of 

unique haplotypes, H. The number of unique haplotypes can be thought of as a 

balance between recombination, which will act to increase H by creating novel 

combinations of alleles, and population structure, which will act to decrease H by 

preventing recombination between genetically isolated subpopulations. The observed 

number of unique haplotypes was 88 in the Czech carriage study, and 50 on average 

Table 5 Taj ima’s D in meningococcal populations3 

Locus Czech Czech Global 

 Carriage Disease Disease 

abcZ 1.15 –0.268 1.063 

adk 0.817 0.512 0.392 

aroE 0.926 –0.966 0.498 

fumC 0.328 –0.221 0.157 

gdh 1.355 1.126 1.742 

pdhC 1.433 1.944 1.842 

pgm 0.811 0.541 0.286 

Concatenated 1.101 0.106 0.833 
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in the random subsets of 100 sequences used for inference. The observed value of 

Tajima’s D for each locus (and all loci combined) is recorded in Table 5 for each of 

the three meningococcal isolate collections. 

 

Significance testing was undertaken using 10,000 simulations with Mcθ̂  and the 

composite likelihood estimate of � . For each simulation H or D was calculated, 

producing null distributions for the two statistics3. From this the probability of 

observing such extreme values of H and D by chance was calculated. In Table 5 bold 

values indicate those that were significant at p < 0.05 and bold and underlined values 
                                                 

3 The null distributions for H (Figure 5), and for D using the concatenated nucleotide sequence 

(Table 5), were generated by Gil McVean. The null distributions for D for the individual loci were 

generated by Daniel Wilson. These results have been published: K.A. Jolley, D.J. Wilson, P. Kriz, 

G. McVean and M.C.J. Maiden (2005) The influence of mutation, recombination, population history, 

and selection on patterns of genetic diversity in Neisseria meningitidis. Molecular Biology and 

Evolution 22: 562-569. 

 

Figure 5 Null distribution of the number of unique haplotypes (STs) under the parameters 

estimated by LDhat for a sub-sample of 100 sequences3. The observed number was 50, which is 

outside the range of simulated values. 
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indicate those that were significant at p < 0.01. When taken individually, only one of 

the seven loci (pdhC) shows consistent evidence for a departure from the standard 

neutral model across populations. For the global disease collection, gdh also shows a 

significant departure from the standard neutral model. When the concatenated 

nucleotide sequence is analysed, there is strong evidence (p < 0.01) for a departure 

from the standard neutral model in the Czech carriage study. Figure 5 shows the null 

distribution for H, with the average observed H in random subsets of 100 sequences 

from the Czech carriage study indicated with an arrow at 50. H = 50 was far outside 

the range of simulated values of H under the estimated parameters. 

 

The direction of the deviation of the summary statistics from their null distributions is 

informative. In every case where D is significant it is positive, indicative of 

population structure. Similarly, H was much lower than expected, suggesting the 

population is more structured than would be expected under the standard neutral 

model. Having falsified the standard neutral model, exploring the way in which the 

model is deficient has revealed an excess of genetic structuring in the carriage 

population. The next step is to propose a refined model, fit the model and criticise it in 

a similar manner. In Chapter 1 various alternatives to the standard neutral model that 

have been proposed were discussed. However, the difficulties surrounding 

evolutionary inference, which were addressed using a composite likelihood approach 

for the standard neutral model, are exacerbated for more complex models with more 

parameters. Two problems exist. First, the efficiency gains made by the composite 

likelihood approximation are not likely to be sufficiently great to make computation 

feasible for models with more parameters and more complex missing data, for 

example the presence of hidden population structure. Second, the necessary 
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methodological extensions for incorporating more sophisticated models are not 

obvious. Amongst the problems is the development of new importance samplers for 

more complex models, which is not trivial. As a result, the composite likelihood 

approach is unlikely to feature prominently in a framework of iterative refinement of 

evolutionary models. 

 

2.3 Approximate Bayesian inference 

In modelling gene sequences there are two big problems. The first is that the data is 

discrete and high-dimensional. For n sequences of length L there are 4nL possible 

datasets. The second is that sequences are not independent: there is a strong inter-

dependency imposed by the underlying ancestral history, which is unknown. Handling 

the dependency structure is a difficult missing data problem, exacerbated by the fact 

that the missing data is a tree, which has a complex and discrete state space. In the 

absence of recombination there are a possible ( ) 12/1 −− nnn  coalescent tree topologies 

underlying a sample of n sequences (Hein et al. 2005). The problem is greater in the 

presence of recombination. 

 

A naïve approach to estimating the parameters  of some evolutionary model M 

would be 

Algorithm A – rejection sampling 

A1. Propose  from some distribution f( ). 

A2. Simulate data H  from the model M with parameters . 

A3. Accept  if H  = H; return to step 1. 
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In principal this method produces the posterior probability of the parameter given the 

data 

 ( ) ( ) ( ) ( )HHH ffff /|| ΘΘ=Θ , (18) 

where ( )Θ|Hf  is the likelihood, that cannot be directly calculated, and f( ) is a prior 

distribution on the parameters. In a coalescent framework, step A2 is easy because 

data can be readily simulated. But for the first of the reasons detailed above, the 

acceptance probability in step 3 is essentially zero. 

 

However, if there exist summaries of the full data H that contain all the information 

useful for inference under M then the state space of H can be massively reduced to 

perhaps a small number of statistics. This is the problem of statistical sufficiency. If a 

small number of sufficient or approximately sufficient statistics can be chosen then 

the acceptance probability in step 3 might no longer be negligible. Bayesian inference 

using summary statistics has received renewed attention in genetics recently (Tavaré 

et al. 1997; Fu and Li 1997; Weiss and von Haeseler 1998; Pritchard et al. 1999; 

Beaumont et al. 2002; Marjoram et al. 2003), and the fundamental simplicity of 

simulating from the model makes it an attractive option for understanding the 

evolution of natural populations. In addition, there are several advantages to the 

Bayesian methodology. Previous summary statistic methodologies proceeded by 

comparing the observed statistics to their distribution under a null model, which is a 

statistically inefficient and inflexible approach, particularly in complex genetic 

problems with many nuisance parameters including the unknown genealogy itself. By 

contrast Bayesian methods are statistically efficient, there is a natural interpretation to 

the posterior distribution, models can be compared quantitatively and nuisance 

parameters are dealt with by integration (Beaumont et al. 2002). 
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2.3.1 MCMC without likelihoods 

The approach used here is based on the Markov chain Monte Carlo (MCMC, see for 

example O’Hagan and Forster [2004]) without likelihoods of Marjoram et al. (2003), 

with some modifications drawing mainly from the work of Beaumont et al. (2002). 

MCMC is a method for obtaining the posterior density of the parameters  given the 

data S (where S indicates that we are using a summary of the haplotypes H). Initially a 

value of 0Θ  is chosen, typically from the prior f( ). The following standard 

Metropolis-Hastings algorithm is then repeated many times 

Algorithm B – Metropolis-Hastings MCMC 

B1. Propose  from a kernel ( )Θ′→ΘK , which is usually dependent on the 

current state  = i. 

B2. With probability 
( )
( )

( )
( )

( )
( )�

�

	


�

Θ′→Θ
Θ→Θ′

Θ
Θ′

Θ
Θ′

=
K

K

f

f

Sf

Sf

|

|
,1minα  the proposal is 

accepted in which case let Θ′=Θ +1i , otherwise ii Θ=Θ +1 . 

B3. Increment i by 1. 

The stationary distribution of the chain is ( )Sf |Θ , independently of the initial value 

0Θ , although the variance in the density estimated from a finite number of iterations 

of the chain, which might be denoted ( )Sf |ˆ Θ , can be reduced by removing iterations 

from the beginning of the chain, known as the burn-in. 

 

There is an obvious problem with performing MCMC in coalescent models: the 

likelihood ( )Θ|Sf  is unknown. The approach of Marjoram et al. (2003) circumvents 

the need to calculate the likelihood explicitly 
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Algorithm C – MCMC without likelihoods 

C1. Propose  from a kernel ( )Θ′→ΘK , where  = i is the current state. 

C2. Simulate data S from the model M with parameters . 

C3. If S = S then with probability 
( )
( )

( )
( )�

�

	


�

Θ′→Θ
Θ→Θ′

Θ
Θ′

=
K

K

f

f
,1minα  the proposal is 

accepted in which case Θ′=Θ +1i , otherwise ii Θ=Θ +1 . 

C4. Increment i by 1. 

Marjoram et al. (2003) show that the stationary distribution of this chain is ( )Sf |Θ . 

In step 3, if S has a continuous state space and/or is multidimensional, then S will 

equal S very rarely. Thus step 3 can be re-formulated 

C3. If ( ) ε≤′∂ SS ,  then with probability 
( )
( )

( )
( )�

�

	


�

Θ′→Θ
Θ→Θ′

Θ
Θ′

=
K

K

f

f
,1minα  the 

proposal is accepted in which case Θ′=Θ +1i , otherwise ii Θ=Θ +1 . 

The function ( )SS ,′∂  defines a distance between the observed and simulated data, and 

�  is a predetermined tolerance. The stationary distribution for this chain is 

( )( )εδ ≤′Θ SSf ,| , which for small �  is hopefully close to ( )Sf |Θ . 

 

The method used here makes two modifications to this scheme. The first is to up-

weight the acceptance probability according to the size of ( )SS ,′∂ , causing the 

Markov chain to spend more time closer to S. This is done by treating the distance as 

a random variable with some distribution that is peaked at zero. The approach is 

general in that any distributional form can be used. The second is to use local 

likelihood conditional density estimation (Loader 1996) to estimate ( )Sf |Θ . The 

benefit of the first modification is to focus the joint density ( )SSf |,Θ′  around the 
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observed value of S which should aid the precision of the conditional density 

estimation. 

 

In summarising the data H with a summary S that is (almost certainly) not sufficient, 

an additional, artificial, layer of uncertainty is introduced. The justification for this is 

to facilitate inference; inference directly on H is too hard. Introducing a tolerance �  

within which simulated values of S are treated as equivalent to S is analogous to 

adding a second, artificial layer of ignorance. Ignorance, or uncertainty, is usually 

modelled using random variables in probability. The rectangular tolerance region 

( ) ε≤′∂ SS ,  is directly analogous to treating the observed summary S as though it 

were measured with uniform error around a true (unobserved) value X. The likelihood 

of the observed summary S is conditional only on X 

 ( )
( )

�
	

�



� ≤
∝

otherwise0

, if1

|

εδ SX

XSf . (19) 

Typically, in one dimension ( )εε +− XXUS ,~ . This idea leads to a more general 

formulation of the method of Marjoram et al. (2003) with an arbitrary distribution for 

( )XSf | . Because X is unknown, it can be estimated using MCMC to obtain 

 ( ) ( ) ( ) ( )ΘΘ∝Θ fXfXSfSXf |||, . 

The following algorithm produces a Markov chain with stationary distribution 

( )SXf |,Θ . 

Algorithm D – Modified MCMC without likelihoods 

D1. Propose  from a kernel ( )Θ′→ΘK , where  = i is the current state. 

D2. Simulate X  from the model M with parameters . 
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D3. With probability 
( )
( )

( )
( )

( )
( )�

�

	


�

Θ′→Θ
Θ→Θ′

Θ
Θ′′

=
K

K

f

f

XSf

XSf

|

|
,1minα  the proposal is 

accepted in which case ( ) ( )Θ′′=Θ ++ ,, 11 XX ii , otherwise 

( ) ( )iiii XX Θ=Θ ++ ,, 11 . 

D4. Increment i by 1. 

 

Proof. In steps 1 and 2 a new pair ( )Θ′′,X  are proposed using the kernel 

( ) ( ) ( )Θ′′→Θ′→Θ=Θ′′→Θ |,, XXKKXXK , where ( )Θ′′→ |XXK  is 

proportional to ( )Θ′′ |Xf , which is the likelihood from the model M with parameters 

. Therefore the acceptance probability is (Metropolis 1953; Hastings 1970)  
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Any arbitrary distribution can be used to model the measurement error ( )XSf | . 

When the uniform distribution of Equation 19 is used, the method is equivalent to that 

of Marjoram et al. (2003). The second modification to their method follows naturally 

having obtained a joint posterior distribution ( )SXf |,Θ . Local linear density 

estimation (Loader 1996) is used to estimate the conditional density ( )SXf =Θ | . 

 

Obtaining the joint posterior ( )SXf |,Θ  might be referred to as the approximate 

Bayesian computation (ABC) step, and estimating ( )SXf =Θ |  might be referred to 

as the conditional density estimation (CDE) step. The benefit of algorithm D is that a 
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normal or double exponential distribution centred around X can be used to model the 

measurement error in the ABC step, so that the joint density ( )SXf |,Θ  is focused 

around X = S, which ought to improve the precision of the CDE step. There is some 

evidence to suggest that basing ( )XSf |  on the Epanechnikov kernel would provide 

the most efficient estimation for ( )SXf =Θ |  (Mark Beaumont, personal 

communication). 

 

2.3.2 Fitting the standard neutral model 

Algorithm D states the method in general terms, but in any specific MCMC 

application the proposed moves and auxiliary variables must be designed to exploit 

the structure of the particular model. The primary objects of inference were the 

population mutation rate 
�
, the transition:transversion ratio �  (Kimura’s [1980] two 

parameter model was used), and the population recombination rate � . In addition, the 

data were augmented by the genealogical tree G. The dependence structure of the 

model was 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )ρκθρκθ
ρκθρκθρκθ

fffGfGfSf

GfGSfSGf

|,,||

,,,,,,,,||,,,,

XX

XXX

=
∝

 (20) 

where S are the observed summary statistics, assumed to be measured from the 

(unobserved) haplotypes X with some error given by ( )X|Sf ,  ( )Gf ,,| κθX  is the 

likelihood of the haplotypes given by the mutation model (Kimura 1980), ( )ρ|Gf  is 

the coalescent likelihood of the genealogy (Griffiths and Marjoram 1997), and 

( ) ( ) ( )ρκθ fff  are the priors. 
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Three summary statistics were chosen by performing preliminary simulations in 

which the correlation between a large number of potential summary statistics and the 

parameters was recorded. The statistics were chosen to be orthogonal in an informal 

sense. That is, each statistic was chosen to be strongly correlated with one parameter, 

but not the other two. The benefit of choosing the statistics this way is that when an 

update to a single parameter is proposed, only one summary statistic is strongly 

affected, so the move is in a sense more local, and the acceptance probability is 

increased. The chosen statistics were the logarithm of the average number of pairwise 

differences ( )πlog  which was strongly correlated with � , the log-odds of ( )ππ /Ts , 

( )ππ /logit Ts  which was strongly correlated with � , and the correlation ( )dr ,cor 2  

between a measure of LD, r2, and physical distance, d, which was strongly correlated 

with � . Tsπ  is the average number of pairwise transitions, and the transformation 

 ( ) ( )
( )ππ

ππππ
/1log

/log
/logit

Ts

Ts
Ts −

=  

was used to remove the correlation between Tsπ  and � . For clarity, each of these 

summary statistics is treated as a function of the haplotypes X, such that 

( ) ( ) ( ) ( ) ( ) ( )drsss Ts ,cor,/logit,log 2
321 === XXX πππ , and the observed summary 

statistics are 

 ( ) ( ) ( )( )HHH 321 ,, sssS =  

where H are the observed haplotypes. The measurement error is modelled as 

 ( ) ( ) ( ) ( )XXXX |||| 321 SfSfSfSf = , 

where 
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Equation 20 suggests the type of MCMC moves that might be made. Changes to �  or 

�  require the haplotypes X to be updated, but not the genealogy G. Changes to �  also 

requires the genealogy to be updated. In principal, neither of these statements is 

strictly true because 

 
( )
( )κθ

κθ
,|

,|

X
X

f

f ′′
 

and 

 
( )
( )ρ

ρ
|

|

Gf

Gf ′
 

are inexpensive to calculate, but moves of this type were not found to help mix the 

Markov chain. The following MCMC moves were implemented. 

 

2.3.2.1 Update  

The population mutation parameter is updated so that 

 ( ) ( )( )1,log~log ζθθ N′ . 

Haplotypes X  are then simulated from ( )Gf ,,| κθ ′′X , and ( )X′s  is calculated. The 

acceptance probability is 
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In the implementation used for analysis, an improper prior on ( )θlog  was used, so 
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and 21 =ζ . 
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2.3.2.2 Update  

The transition:transversion ratio is updated so that 

 ( ) ( )( )2,log~log ζκκ N′ . 

Haplotypes X  are then simulated from ( )Gf ,,| κθ ′′X , and ( )X′s  is calculated. The 

acceptance probability is 

 
( )
( )

( )
( )

( )
( )�

�

	


�

′→
→′′′

=
κκ
κκ

κ
κα

K

K

f

f

Sf

Sf

X
X

|

|
,1min . 

In the implementation used for analysis, an improper prior on ( )κlog  was used, so 

 
( )
( ) �

�

	


� ′

=
X
X

|

|
,1min

Sf

Sfα , 

and 22 =ζ . 

 

2.3.2.3 Update  

A proposal distribution for �  of the same form as for �  and �  was trialled, but led to 

poor mixing. Instead an independence sampler was found to work well. The 

population recombination rate is updated so that that �  is drawn from the prior ( )ρ′f , 

which must be a proper distribution. 

  

A new genealogy G  and haplotypes X  are then simulated from ( )ρ′′ |Gf  and 

( )Gf ′′ ,,| κθX , and ( )X′s  is calculated. The acceptance probability is 

 
( )
( ) �

�

	


� ′

=
X
X

|

|
,1min

Sf

Sfα . 

In the implementation used for analysis, the prior for ( ) ( )2,10~log −Uρ . 

 



 

 120 

2.3.3 Parameter estimates 

The population mutation rate, transition:transversion ratio and population 

recombination rates were estimated for each of the seven housekeeping loci for the 

Czech carriage population. The hyperparameters for the model of measurement error 

(� 1, � 2 and � 3) was chosen by running pilot analyses. For each summary statistic, the 

choice of hyperparameter reflects a balance between good mixing of the Markov 

chain and focusing the posterior density close to s(X) = S. Choosing a small � i will 

penalise simulated datasets X whose summary statistics do not closely resemble Si, 

causing a tight posterior density around si(X) = Si. Concentrating the density around Si 

improves precision in the CDE step. However, the Markov chain may fail to mix well, 

or converge at all, if the resultant acceptance probabilities are too low. On the other 

hand, choosing a large � i improves mixing because a much greater range of si(X) is 

accepted. Too large a � i and the chain is essentially no longer conditioned on the data 

Si. The posterior will resemble the prior, and the posterior density will not necessarily 

be concentrated around si(X) = Si, making the CDE step unreliable. Worse still, use of 

an improper prior means that the posterior cannot converge at all, and the chain 

resembles a random walk. In the analyses that follow, 5.02
1 =σ , 25.02

2 =σ  and 

005.02
3 =σ  were found to work, although there was some flexibility. Each Markov 

chain was run for 100,000 iterations. 
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Figure 6 is a scatterplot of the posterior of ( )( )Ssf |,1 θX  for abcZ. The red line 

indicates the observed value of the statistic S1, which is ( ) 98.2log =π . The 

relationship between ( )X1s  and 
�
 appears to be log-linear except for high values of 

�
, 

where ( )X1s  plateaus towards its maximum of ( ) 07.6log =L  as the sequence 

becomes saturated with mutations. The accuracy of any method that computes the 

posterior ( )( )( )εδθ ≤11 ,| SXsf  obviously depends on the width of the tolerance � . 

However, choice over �  is determined by pragmatic considerations. Conditional 

density estimation at ( ) 11 Ss =X  is equivalent to obtaining the optimal tolerance of 

0=ε , within the accuracy of the density estimation. Figure 7 demonstrates how 

conditioning on ( ) 11 Ss =X  yields a much tighter posterior on 
�
. In the results that 

 

Figure 6 Joint posterior of  f(s1(X),� |S) for abcZ, with �  on a log scale. The red line indicates the 

observed value S1 = 2.98. Locfit (Loader 1996) is used to estimate the conditional density of  

f(� | s1(X) = S1,S2,S3) along this line. See Figure 7. 
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follow, conditional density estimation is performed jointly for all summary statistics 

so ( ) ( ) ( ) 332211 ,, SsSsSs === XXX , or ( ) Ss =X  for short. 

 

In Table 6 the mean and 95% highest posterior density (HPD) interval is recorded for 

each parameter � , �  and � . The estimates of �  and �  are on the same order of 

magnitude as those estimated using Mcθ̂  and LDhat. The relative magnitude of the 

estimates among loci is similar, but not the same. Estimates of �  range from 0.0037 

for adk to 0.0191 for abcZ. The largest estimate of Mcθ̂  was 0.0612 for aroE. 

Although aroE does not have the highest point estimate, it does have the highest 95% 

HPD bound (0.0644). Estimates of �  range from 0.0049 for aroE to 0.1686 for fumC. 

 

Figure 7 Black line: posterior of f(� |S). Red line: posterior of f(� |s1(X)=S1,S2,S3). Both were fit 

using locfit (Loader 1996). �  is on a log scale. By conditioning on the observed value S1, a much 

tighter posterior is obtained. 
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These two loci were at the extremes of the range for the LDhat estimates. Estimates of 

the transition:transversion ratio �  range from 2.7 for pgm to 25.5 for adk. No 

estimates of �  have previously been obtained. 

 

The 95% HPD intervals for some parameters, particularly �  are wide, the highest 

upper bound being 4.97. To some extent, the width of the 95% HPD interval is related 

to the point estimate. Because �  is constrained to be a positive number, it is natural 

that as the mean increases the upper bound increases disproportionately. Nevertheless, 

adk, fumC and gdh have especially high upper bounds (4.34, 4.97 and 1.56 

respectively) compared to the point estimates and the upper bounds for the other loci. 

For adk and gdh this can be explained in part by the low mutation rates (estimated at 

0.0037 and 0.0054 respectively) which strictly limits the information available for 

inference on � . The wide credible intervals might be a penalty for using a small 

number of summaries of the data for inference. However, the credible intervals cannot 

be compared to the confidence intervals from LDhat because none are produced. The 

composite likelihood curve cannot produce reliable estimates of uncertainty because 

by assuming independence between pairs of sites, the data are assumed to be much 

more informative than they really are. Obtaining meaningful credible intervals is one 

of the benefits of the Bayesian inference method used here. Further investigation into 

the summary statistics used for inferring �  might be necessary to find a more sensitive 

statistic or combination of statistics. For example, Wall (2000) used H and Rm to 

estimate �  in a rejection sampling setting. 
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Table 6 Posterior mean (and 95% HPD) for meningococcal evolutionary parameters 

Locus 
 

310×θ   κ   310×ρ   θρ /   
Relative rate of 

diversification 

abcZ  19.1  18.9  43.8  2.3  57.5 

  (9.1, 36.4)  (7.2, 51.3)  (3.9, 335.9)  (0.2, 21.4)  (5.1, 533.1) 

           

adk  3.7  25.5  172.1  50.5  242.9 

  (1.7, 6.7)  (2.7, 561.9)  (0.6, 4344.1)  (0.3, 1409.0)  (1.4, 6783.1) 

           

aroE  13.3  2.9  4.9  0.4  14.0 

  (2.6, 64.4)  (0.6, 19.8)  (0.3, 33.2)  (0.0, 4.8)  (0.9, 177.8) 

           

fumC  10.1  11.8  168.6  17.4  187.3 

  (5.7, 16.7)  (4.5, 37.8)  (0.7, 4970.9)  (0.1, 685.2)  (0.8, 7383.3) 

           

gdh  5.4  16.4  50.8  9.6  75.4 

  (3.0, 9.5)  (5.2, 67.9)  (0.8, 1559.8)  (0.1, 329.3)  (1.1, 2577.9) 

           

pdhC  17.3  6.5  25.0  1.5  38.5 

  (8.0, 36.8)  (3.3, 13.9)  (1.5, 222.8)  (0.1, 14.8)  (2.2, 389.6) 

           

pgm  12.6  2.7  5.0  0.4  10.5 

  (4.2, 34.0)  (1.3, 6.0)  (0.8, 59.5)  (0.0, 5.9)  (1.1, 145.9) 
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Also shown in Table 6 are the mean and 95% HPD intervals for the posteriors on 

θρ / . The point estimates are somewhat higher than those estimated using LDhat 

(Table 4) differing by a factor of 0.9 for adk to 27.6 for adk. However, this is mainly a 

result of the differences in the estimates of �  and �  marginally, and not caused by the 

crude estimation of θρ /  as the ratio of the marginal point estimates (Table 4). The 

relative rates at which recombination and mutation cause diversification are also 

estimated to be higher by the Bayesian method than by LDhat (Table 6). The 

estimates range from 10.5 for pgm to 242.9 for adk. LDhat estimated adk to have the 

second lowest relative rate (8.8). For these estimates the average tract length 

estimated by LDhat of 1,100 bp was used. In principal the average tract length could 

be estimated by the Bayesian method using the correlation between LD and a 

Bernoulli variable recording whether the sites are at the same or different loci. 

 

2.3.4 Bayesian cross-validation 

Any interpretation of the parameter estimates is obviously contingent upon the 

adequacy of the model, and there are various ways to perform model criticism in a 

Bayesian framework. In this section I will use the method of cross-validation to 

evaluate the adequacy of the standard neutral model. In Chapter 5 posterior predictive 

p-values are used for goodness-of-fit testing. However, an informal indication of the 

fit of a model can come directly from the Markov chain. Poor mixing can be a signal, 

not just of a poorly designed MCMC scheme, but also of a dataset that does not fit the 

model. In the context of the ABC-CDE method, difficulty in getting the posterior 

density concentrated around ( ) Ss =X  can be a symptom of a poor model fit, and this 

informal diagnostic can be understood from the perspective of cross-validation. 
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In Figure 6 the posterior density ( )( )Ssf |,1 θX  is centred around the observed value 

of 98.21 =S . The region around S1 is well-sampled, so CDE is likely to be accurate. 

Contrast that with Figure 8, which shows the posterior density ( )( )Ssf |,3 ρX  for the 

same locus (abcZ, left hand graph). The density is not so well centred around 

235.03 −=S  (red line), although the area is probably sufficiently well-sampled for 

accurate CDE. However, for adk (right hand graph), which has an even more extreme 

observed value of 434.03 −=S  (red line), the chain shows some sign of not mixing 

well, and the area around S3 is not well-sampled. Obviously this will affect the quality 

of CDE. No amount of tweaking the hyperparameters � 1, � 2 and � 3, or the parameters 

of the proposal distributions 
�

1 and 
�

2 appeared to be able to make aroE mix as well as 

Figure 8 Scatterplots of f(s3(X),� |S) for abcZ and aroE (�  is on a log scale). The observed values of 

S3 are marked with red lines. For abcZ the chain has mixed well, although the density is 

concentrated at smaller values of s3(X) than that observed. For aroE the observed value is yet more 

extreme, and the chain shows some sign of problems mixing. The quality of CDE may be affected. 
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abcZ. Furthermore, the problem was confined to the plot of �  on s3(X), and not the 

other parameter-statistic pairs. Locus pgm suffered similar problems to aroE. The 

problem was that datasets X were rarely being simulated for which s3(X) was as 

extreme as the observed value S3. Informally speaking, this suggests that the data are 

not well described by the model. 

 

Bayesian cross-validation is a formal technique for model criticism (see for example, 

O’Hagan and Forster 2004), and helps explain the problems seen in Figure 8. Cross-

validation is based on dividing the data into two parts, one part that is used for 

inference (xf) and the other part that is used for model criticism (xc). If the model is a 

good fit, then xc will be well-supported in the predictive distribution conditional on xf. 

If xc are unlikely conditional on xf then there is a problem. The predictive distribution 

of xc given xf is 

 ( ) ( ) ( )� ΘΘΘ= d|,|| ffcfc xfxxfxxf . (21) 

In ABC, the data can be partitioned into summary statistics used for inference and 

summary statistics used for model criticism. To address the problems noted in Figure 

8, S1 and S2 were used for inference and S3 for model criticism. 
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Modifying the MCMC scheme to perform cross-validation is straightforward by 

removing the conditioning on the statistic(s) in question, in this case S3. Because the 

dimensionality of the data is also reduced, the chain takes less time to run. As a 

diagnostic of model fit, the predictive probability of observing ( )X3s  as extreme as S3 

was calculated as 

 ( )( )�
∞−

∗ ==
3

d,| 213

S

uSSusfp X , (22) 

 ( ) ( ) ( )( )�
∞−

====
3

d,| 22113

S

uSsSsusfp XXX , (23) 

and the p-values were made two-tailed in the usual way. ∗p  can be estimated directly 

from the Markov chain, without CDE, simply as the number of times ( )X3s  was as 

extreme or more extreme as S3. Equation 23 requires CDE using locfit (Loader 1996). 

In practice, ∗p  and p are almost identical. The results are shown in Table 7. Cross 

validation suggests that there are problems with the model. The predictive probability 

Table 7 Cross-validation for standard neutral model 

Locus 
∗p  p  

abcZ 0.004 0.005 

adk 0.120 0.116 

aroE 0.000 0.000 

fumC 0.683 0.687 

gdh 0.018 0.015 

pdhC 0.001 0.002 

pgm 0.000 0.000 
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of S3 given S1 and S2 is less than 0.05 for all but two of the loci (adk and fumC). What 

this means is that for the inferred values of �  and �  (about which S1 and S2 are 

informative), the model rarely predicts values of S3 as extreme as observed, when the 

values of �  are taken from the flat prior which was ( )2,10−U  on ( )ρlog . This is 

illustrated by Figure 9, which shows ( )( )213 ,|, SSsf ρX  for adk and aroE. The red 

line indicates the observed value of S3, which is within the range of ( )X3s  sampled for 

adk, but well outside the range sampled for aroE. Because values of �  are taken from 

the prior, the prior will have an important effect on the conclusions of cross-

validation. However, for aroE it is clear that no choice of prior would have changed 

the conclusion that the model does not predict values of S3 as extreme as observed. 

 

Figure 9 Cross-validation reveals discrepancies between the observed S3 = cor(r2,d) and that 

predicted by a model fit using S1 and S2. For loci adk and aroE, f(s3(X),� |S1,S2) is plotted, with the 

observed value of S3 indicated by the red line. For adk, p* = 0.120, whereas for aroE, p* = 0.000 

(see Table 7 and text). 
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Owing to the fact that S1 and S2 were chosen to be informative about �  and � , but not 

� , conditioning on ( ) 11 Ss =X  and ( ) 22 Ss =X  using CDE barely alters the joint 

posterior of ( )X3s  and � . This is illustrated by Figure 10, in which locfit has been 

used to estimate the joint posterior of  ( )X3s  and �  marginal to ( )X1s  and ( )X2s  (left 

hand image) and conditional upon ( ) 11 Ss =X  and ( ) 22 Ss =X  (right hand image) for 

aroE. In each image, the observed value of S3 is indicated with a yellow line, which 

falls well outside the density in both cases. This observation is reflected in the fact 

that ∗p  and p are almost identical for all loci (Table 7). Figures 9 and 10 illustrate the 

ability of locfit to estimate joint densities. The left hand image in Figure 10 is a 

density estimate of the right hand image in Figure 9. In the density plot, more intense 

colours (closer to white) correspond to higher posterior density. The density plot 

(Figure 10, left) is more informative than the scatterplot (Figure 9, right), because in 

Figure 10 Locfit has been used to estimate f(s3(X),� |S1,S2) and f(s3(X),� | s1(X)=S1, s2(X)=S2) (left 

and right images respectively) for aroE. Note that �  is on a log scale. More intense colours (closer 

to white) indicate higher posterior density. The observed value of S3 is indicated with a yellow line 

on the far left of each image. 
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areas of high density the scatterplot becomes saturated, whereas the density plot does 

not. 

 

Cross-validation of S3 reveals the reason for the difficulties mixing the MCMC chain 

for aroE and pgm. When there is little support for S3 in the predictive distribution of 

( )X3s , the distance between S3 and ( )X′3s  for simulated datasets X  will be large, and 

as a result the acceptance probability small. Therefore it will be more difficult to 

perform inference on datasets that are poorly described by the model because of lower 

acceptance probabilities in the Markov chain. If the adequacy of the model is in 

question (which surely it is for any basic model), then the primary purpose of 

estimating the model parameters is to perform goodness-of-fit testing. Biologically 

meaningful interpretation of the parameters is contingent upon the adequacy of the 

model, and if it can be shown that the model is a bad fit, then the utility of parameter 

estimates per se is diminished. If there is difficulty in getting the Markov chain to 

mix, particularly if a single summary statistic is affected, then cross-validation is a 

useful method of model criticism because it may reveal that the predictive distribution 

of the observed statistic is not well supported by the model. The advantage of cross-

validation is that it is a formal model criticism technique, in contrast to the informal 

observation of poor mixing which might be symptomatic of a number of underlying 

problems. 

 

2.4 Refining the model 

Regardless of the method of inference, be it composite likelihood or approximate 

Bayesian computation, the central conclusion that patterns of meningococcal genetic 
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diversity cannot be explained by the standard neutral model is unaffected. Whilst that 

conclusion does not have to question the validity of the coalescent as the basic starting 

point for evolutionary inference, it does mean that for understanding meningococcal 

evolution, a refinement to the coalescent is required. 

 

Model criticism techniques have revealed that there is an excess of genetic structuring 

in meningococcal populations. The observed number of sequence types (STs) is too 

high for the estimated rate of recombination, and there appears to be a dearth of low 

frequency allelic variants, indicative of long-term population subdivision. The 

correlation between LD and physical distance is too strong for five of the seven 

housekeeping loci studied, implying that LD decays more deterministically than 

expected under the standard neutral model. This may also reflect the existence of 

population structure (Pritchard and Przeworski 2001). Together, these results suggest 

that any refinement to the standard neutral model must incorporate some degree of 

population structuring, but the exact formulation of that structure, and the cause, is 

unclear. For that reason, the next step is to propose a revised model, fit the model, and 

criticise it. 

 

A process of iterative refinement of the evolutionary model is, in my opinion, 

essential to furthering the understanding of meningococci population biology. The 

coalescent provides a common thread for refinement of the model. In the next chapter, 

I will fit the neutral microepidemic model of Fraser et al. (2005) using a modification 

to the coalescent. The conclusions are somewhat different to those found by fitting a 

multinomial distribution to the observed allele frequencies (Fraser et al. 2005). The 

importance of geographic structuring and the relationship between carried and 
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disease-causing populations of meningococci is also examined using a variety of 

statistic models. Together these suggest what the next refinement to a coalescent 

model of meningococcal evolution might be. 

 


