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Chapter 4 

Evolutionary Model of Immune Selection 

 

For a parasite such as Neisseria meningitidis, the key to long-term persistence is the 

successful and ongoing colonisation of a host. Despite its notorious pathogenicity, N. 

meningitidis normally resides as a commensal of the nasopharynx, but that is not to 

say that N. meningitidis is an onlooker in the co-evolutionary arms race between the 

host immune system and microbial intruders. Antigenic variation is a distinguishing 

feature of meningococcal populations, indicating that the observed genetic diversity at 

these loci is caused by strong selective pressures. Indeed, the patterns of genetic 

variation in samples of antigen gene sequences can be used to locate individual sites 

that interact directly with the host immune system. 

 

Current methods that attempt to identify sites that interact with the immune system 

are based on reconstructing the phylogenetic tree of the gene sequences. In a highly 

recombining organism such as N. meningitidis, phylogenetic methods are not 

appropriate because there may be multiple trees along the sequence. In the presence of 

high levels of recombination phylogenetic methods that attempt to detect positive 

selection can have a false positive rate of up to 90% (Anisimova et al. 2003; Shriner 

et al. 2003). In this chapter I will begin by discussing the background to the dN/dS 

ratio (section 4.1.1), and the current phylogenetic methods for detecting immune 

selection (section 4.1.2). In section 4.2 I present a new population genetics model of 

immune selection in the presence of recombination, based on an approximation to the 

coalescent (Li and Stephens 2003). I also describe a model for variation in selection 



 

 177 

pressure and the recombination rate within a gene, which is novel in the context of 

detecting selection. In section 4.3 I describe how to perform Bayesian inference on 

the selection and recombination parameters under the new model, using reversible-

jump Markov chain Monte Carlo (MCMC). Then in section 4.4, I use a simulation 

study to investigate the properties of the inference method under two scenarios and 

demonstrate that the new method has the power to detect variability in selection 

pressure and recombination rate, and does not suffer from a high false positive rate. In 

Chapter 5 I apply the new method to the porB locus of N. meningitidis which encodes 

the PorB outer membrane protein. I use prior sensitivity analysis and model criticism 

techniques to verify the inferences, and compare the results to those obtained with 

phylogenetic methods.  

 

4.1 The dN/dS ratio 

4.1.1 Models that incorporate the dN/dS ratio 

As an indicator of the action of natural selection in gene sequences the ratio of non-

synonymous to synonymous substitutions (dN/dS) is a versatile and widely-used 

method of summarising patterns of genetic diversity. When comparing a pair of 

nucleotide sequences, synonymous substitutions refer to those codons that differ in 

their nucleotide sequence but not in the amino acid encoded. Non-synonymous 

substitutions refer to those codons that differ both in nucleotide sequence and amino 

acid encoded. In Figure 1 there are nine possible single nucleotide mutations of the 

triplet CTT, two of which are synonymous because leucine is still encoded, the other 

seven of which are non-synonymous. 

 



 

 178 

In a strictly neutral model in which single nucleotide mutations occur at a uniform 

rate, non-synonymous mutations would occur more frequently than synonymous 

mutations, because there are more potential non-synonymous changes. The dN/dS 

ratio measures the relative rate at which non-synonymous and synonymous changes 

occur, adjusting for the fact that there are more potential non-synonymous changes. In 

a strictly neutral model of evolution, the dN/dS ratio equals one. The dN/dS ratio is an 

indicator of natural selection, because deviations from a ratio of one suggest that 

nucleotide changes that alter the amino acid sequence are more or less frequently 

observed than those that do not. 
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Figure 1 Synonymous and non-synonymous single nucleotide mutations from CTT. 
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4.1.1.1 Purifying selection and dN/dS 

Figure 2 illustrates how the observed patterns of synonymous and non-synonymous 

polymorphism represent a confounding between the evolutionary processes of 

mutation and natural selection. For example, it is generally assumed in studies of 

adaptation that organisms are optimally adapted to their environment (Dawkins 1982). 

This is a reasonable assumption because over long periods of time natural selection 

favours variants that have a selective advantage. If a gene is adapted to its 

environment, even if it is not optimally adapted, then there will be a great many more 

worse alternative sequences than better alternative sequences. So, random mutation 

will tend to produce less-well adapted sequences, not better adapted sequences. As a 

result of natural selection, those sequences that have reduced survival or reproductive 

success will be under-represented in a sample taken from the population. None of this 

applies to synonymous changes, of course, which do not alter the amino acid 

sequence of the gene product. As a result it is reasonable to expect that purifying, or 
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Figure 2 In samples of gene sequences the effects of mutation and selection on patterns of genetic 

diversity are confounded. For example, non-synonymous polymorphism might be under-represented 

because of purifying selection. 
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negative, selection will cause non-synonymous variants to be under-represented 

relative to synonymous variants, and the dN/dS ratio will be less than one in a 

functional gene. This is known as functional constraint. 

 

The fact that mutation and natural selection are confounded in genetic samples serves 

as the basis for a class of evolutionary models of selection. Models of selection that 

describe the movement of alleles through the population (e.g. Fisher 1930) are not 

easily amenable to inference because for each site and each allele the selective 

advantage conferred by that allele (the selection coefficient), the time since the allele 

arose, and the way in which selection coefficients interact across sites, all need to be 

specified, resulting in a great many parameters. Such models exist, usually they make 

assumptions to reduce the number of parameters, but the inference methods are 

computationally prohibitive even when recombination is not modelled (e.g. Coop and 

Griffiths 2004). Evolutionary models that deliberately confound mutation and natural 

selection (Goldman and Yang 1994; Nielsen and Yang 1998; Sainudiin et al. 2005) 

use a single selection parameter for each site, the dN/dS ratio. In these models natural 

selection is treated as a form of mutational bias, so that if the dN/dS ratio is less than 

one then non-synonymous mutations simply occur at a lower rate. 

 

In the codon model of Nielsen and Yang (1998), hereafter NY98, the mutation rate 

from codon i to j ( ji ≠ ), which I will measure in units of PNe generations (where P is 

the ploidy and Ne the effective population size) is 
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and � ≠
−=

ij ijii qq , where the frequency of codon j is jπ , �  is the relative rate of 

transitions to transversions (defined in Figure 3), and �  is the dN/dS ratio. If there 

were equal codon usage (i.e. 61/1=jπ  because only the 61 non-stop codons are 

allowed in NY98) the total rate of synonymous mutation (per PNe generations) would 

be approximately, 
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Figure 3 There are two classes of nucleotides, purines (adenosine and guanine) and pyrimidines (thymine, 

cytosine and uracil). Single nucleotide mutations that do not change the nucleotide class are called 

transitions, and those that do are called transversions. For any nucleotide there are two possible 

transversions and one transition. Despite this, transitions are observed more commonly than transversions, 

so the transition:transversion ratio �  is usually greater than two. 
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4.1.1.2 Positive selection and dN/dS 

When organisms are already well-adapted to their environment natural selection will 

purge the population of less-fit variant genes so non-synonymous polymorphism is 

under-represented relative to synonymous polymorphism and dN/dS < 1. The 

converse scenario, in which non-synonymous polymorphism is over-represented 

relative to synonymous polymorphism and dN/dS > 1 needs careful interpretation. An 

excess of non-synonymous polymorphism implies that there is a selective advantage 

to novelty in the amino acid sequence. It might be envisaged that recurrent, adaptive 

change in a gene will manifest itself as an over-representation of non-synonymous 

relative to synonymous change because positive selection will drive the adaptive 

variants to high frequency. Such a model has been used to detect natural selection 

between species, because it is assumed that multiple adaptive changes are important 

during speciation (McDonald and Kreitman 1991; Shpaer and Mullins 1993; Long 

and Langley 1993). 

 

However, some controversy surrounds the generality with which adaptation leads to 

an excess of non-synonymous polymorphism. When positive dN/dS is observed, it is 

likely that multiple compensatory, or complementary, changes at several sites in the 

gene have occurred as a result of adaptation. So an excess of non-synonymous relative 

to synonymous polymorphism is a clear signal of adaptive change, or positive 

selection. But a single adaptive substitution at a particular codon is not sufficient to 

generate a positive dN/dS ratio across a whole gene if much of the gene is 

functionally constrained. So the dN/dS ratio will under-report the extent of adaptive 

change for any model in which episodic environmental change causes a 

transformation from one optimal state to a new optimum. 
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What an excess of non-synonymous to synonymous polymorphism is truly indicative 

of is selection for variation in the polypeptide sequence, not change from one 

conserved state to another. That makes the dN/dS ratio a particularly useful tool for 

studying the interaction between antigen genes and the immune system. 

Immunological memory against particular antigens exerts a strong selective pressure 

for antigenic novelty in the parasite population. This is known as diversifying 

selection. The antigenic properties of an outer membrane protein such as PorB may be 

determined by a small number of amino acids that might or might not be contiguous 

in the codon sequence. The dN/dS ratio can in principle be harnessed to estimate the 

magnitude of the selection pressure exerted by the immune system on different genes, 

investigate the evolutionary trade-off between protein functionality and immune 

evasion in the parasite, and locate the genetic determinants of antigenicity at a locus. 

The latter might be informative for vaccine development. 

 

4.1.2 Inferring immune selection using dN/dS 

Nielsen and Yang (1998) proposed a maximum likelihood phylogenetic approach to 

estimating the dN/dS ratio that employs a codon-based mutation model (Equation 1), 

and treats the dN/dS ratio as an unknown parameter � . This method has subsequently 

been expanded (Yang et al. 2000; Yang and Swanson 2002; Swanson et al. 2003), 

adapted into a Bayesian setting (Huelsenbeck and Dyer 2004), and approximated for 

the purposes of computational efficiency (Massingham and Goldman 2005). 

Simulation studies have shown that phylogenetic likelihood-based methods can be 

substantially more powerful than alternative non-likelihood-based approaches 
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(Anisimova et al. 2001; Anisimova et al. 2002; Wong et al. 2004; Kosakovsky Pond 

and Frost 2005). 

 

Estimating the selection parameter �  using these methods has become widespread 

(e.g. Bishop et al. 2000; Ford 2001; Mondragon-Palomino et al. 2002; Filip and 

Mundy 2004) and has been applied to many organisms. Analysis of pathogens such as 

viruses (Twiddy et al. 2002; Moury 2004; de Oliveira et al. 2004) and bacteria (Peek 

et al. 2001; Urwin et al. 2002) is particularly informative, because they typically have 

high mutation rates and are consequently genetically diverse, which lends greater 

statistical power to estimation. As discussed, the diversifying selection imposed by 

the host immune system may be the most appropriate model for which inference 

based on the dN/dS ratio can be applied. The ability to observe these populations 

evolving in real-time makes them especially interesting for the study of evolution 

(Drummond et al. 2003a), and suggests that we may be able to make useful 

epidemiological inference from molecular sequence data. 

 

4.1.2.1 CODEML 

The method of Nielsen and Yang (1998) is the most popular method for estimating 

the dN/dS ratio for nucleotide sequence data, and has been widely applied to samples 

within parasite populations. Based on the mutation model specified by Equation 1, in 

its original incarnation a random effects model is used for variation in �  between 

sites. To make inference feasible, only three classes of sites, occurring in proportions 

p0, p1 and p2 are allowed. These have dN/dS ratios � 0, � 1 and � 2 respectively, subject 

to the constraint that 210 ωωω << . The method has three stages. 
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1. A tree topology is supplied or estimated using maximum likelihood (ML) 

from the data using a simple nucleotide mutation model. 

2. Conditional on the topology, the branch lengths, � , p0, p1 and  are estimated 

by maximum likelihood. 

3. An empirical Bayes (Robbins 1956) approach is used to obtain the posterior 

probability that a given site is a member of a particular class. 

The posterior probability that site h belongs to class k, so that the selection parameter 

at site h, wh say, equals � k is taken to be 

 ( ) ( )
( )�

=

=

=
==

2

0

|

|
|Pr

l
lhhk

khhk
hkh

wfp

wfp
w

ω

ωω
X

X
X , (2) 

(Nielsen and Yang 1998) where Xh is the codon alignment at site h and 

( )khh wf ω=|X  is the likelihood function. Equation 2 hides some of the conditioning 

however. The likelihood function in Equation 2 is not marginal to, but conditional 

upon the ML tree topology, branch lengths and � , which are estimated using the 

alignment across all sites, X. The posterior probability of belonging to class k is also 

conditional upon the ML estimates of p0 and p1. 

 

The method of Nielsen and Yang (1998) is implemented in the program CODEML, 

part of the PAML package (Yang 1997). CODEML includes a large number of 

alternative specifications for the variation in �  over the sequence, including an 

arbitrary number of classes, gamma, beta and truncated normal distributions for the 

variation in �  across sites (the distributions have to be discretised for computational 

feasibility) and combinations thereof (Yang et al. 2000). Nielsen and Yang (1998) use 

a likelihood ratio test to compare nested models of variation in � . For example, a 

model with three classes where � 0 = 0, � 1 = 1 and � 2 > 1 can be compared to a model 
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with only two classes where � 0 = 0 and � 1 = 1. This constitutes a test for positive 

selection. Nielsen and Yang (1998) assume that for nested models, the difference in 

double the log likelihood (the deviance) follows a � 2 distribution with degrees of 

freedom equal to the difference in number of parameters. In practice this asymptotic 

result might not hold (Anisimova et al. 2001). 

 

4.1.2.2 MrBayes 

Huelsenbeck and Dyer (2004) implement the model of Nielsen and Yang (1998) in a 

fully Bayesian setting, available in MrBayes 3 (Ronquist and Huelsenbeck 2003). 

MrBayes uses MCMC to obtain a posterior distribution for all parameters of the 

model: codon frequencies, tree topology and branch lengths, � , p and . Not 

surprisingly, it is considerably more computationally intensive than CODEML.  

 

Huelsenbeck and Dyer (2004) fit a uniform prior on all unrooted tree topologies, and 

an exponential prior on branch lengths. Symmetric Dirichlet priors are applied to the 

frequencies p of the �  classes, and the codon frequencies. For the 

transition:transversion ratio � , a distribution describing the ratio of two i.i.d. 

(independently and identically distributed)  exponential random variables is used: 

 ( )
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Under their prior, the selection parameters � 0, � 1 and � 2 are treated as ordered draws 

( 210 ωωω << ) from a distribution describing the ratio of two i.i.d. exponential 

random variables: 
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Because MrBayes is fully Bayesian, uncertainty in the phylogeny, mutation 

parameters and �  class frequencies is taken into account in the posterior probability 

that site h belongs to class k 

 ( ) ( )� ΘΘ=== d|,|Pr XX khkh wfw ωω , 

where  represents κω ,,][ pk− , the phylogenetic tree topology and branch lengths. 

 

4.1.2.3 SLR 

Massingham and Goldman (2005) introduced the sitewise likelihood ratio (SLR) 

method, which is an approximation to the ML method of Nielsen and Yang (1998). 

SLR is principally concerned with identifying the mode of selection at each site (i.e. 

dN/dS < 1 or dN/dS > 1). 

 

The problem with estimating a separate dN/dS ratio for every codon in a sequence is 

that there are too many parameters. Nielsen and Yang (1998) overcame this problem 

by using a random effects model for the variation in �  which reduces the number of 

parameters to only a few. In CODEML, maximum likelihood estimates of the 

parameters are obtained using a high dimensional optimization procedure which is 

computationally intensive. In contrast, Massingham and Goldman (2005) use an 

approximation, described below, that allows a different �  to be estimated for each 

site. The approximation allows there to be a single multidimensional optimisation for 

the whole sequence (with fewer parameters than in CODEML) and then a one 

dimensional optimisation for each site. 

 The method works as follows 
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1. Assuming a common selection parameter for the whole sequence � 0, the 

maximum likelihood tree, including branch lengths and the parameters �  and 

� 0 are jointly estimated. 

2. For each site i an individual selection parameter � i is estimated, assuming that 

the selection parameter for all other sites is � 0. 

3. For each site i a likelihood ratio test is performed for the null hypothesis that 

� i = 1 by assuming that the difference the deviance between ii ωω ˆ=  and 

� i = 1 is � 2 distributed with one degree of freedom. 

The method is approximate because for each site � i is estimated conditional upon all 

the other parameters, including � 0. As a result estimating � i is a one dimensional 

problem for each site. The � 2 distribution used in the likelihood ratio test is an 

asymptotic result that may not hold, so a parametric bootstrap procedure (Goldman 

1993) can also be used to generate the null distribution of the difference in deviances. 

 

4.1.2.4 Problems with current methods 

CODEML, MrBayes and SLR all rely on reconstructions of the phylogenetic tree for 

the sample of genes. These methods have been applied frequently to within-

population samples of micro-organisms (Twiddy et al. 2002; Moury 2004; de Oliveira 

et al. 2004; Peek et al. 2001; Urwin et al. 2002). However, the use of phylogenetic 

techniques is questionable in organisms that are highly recombining, because 

recombination leads to not one, but multiple evolutionary trees along the sequence. If 

the recombination rate is of the same order as the mutation rate, as has been found in 

some organisms (McVean et al. 2002; Stumpf and McVean 2003), then there might 

be a new evolutionary tree for every polymorphic site along the sequence. In such a 

scenario, which is plausible for many highly-recombining micro-organisms (Awadalla 
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2003) and eukaryotic genes containing recombination hotspots (McVean et al. 2004, 

Winckler et al. 2005), there is little hope to infer any particular evolutionary tree 

along the sequence. When a single evolutionary tree is estimated for a sample of gene 

sequences that have undergone recombination, the resulting tree is likely to have 

longer terminal branches and total branch length, yet a smaller time to the most recent 

common ancestor, in a way that superficially resembles the star-shaped topology of an 

exponentially growing population (Schierup and Hein 2000). The effect on detecting 

diversifying selection is to produce a high rate of false positives (Anisimova et al. 

2003), as high as 90% (Shriner et al. 2003). 

 

4.2 Modelling selection with recombination 

4.2.1 Population genetics inference 

When changes in the evolutionary tree are separated by only a few polymorphic sites, 

there is little hope to infer the tree at any particular site along the sequence. The 

population genetics approach is to treat the evolutionary trees along the sequence, or 

genealogy, as missing data. Because the likelihood of a set of molecular sequences 

needs to be evaluated with reference to a particular genealogy (Felsenstein 1981), it is 

calculated by averaging over the genealogies, weighted by the probability of that 

genealogy under the missing data model. 

 ( ) ( ) ( )� Θ=Θ GGPGPP d,|| HH , (3) 

where ( )Θ|HP  is the likelihood of the data H given the parameters , ( )GP  is the 

missing data model for the genealogy and ( )GP ,| ΘH  is obtained using the pruning 

algorithm (Felsenstein 1981). There are various ways to model ( )GP . In the case of 
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no recombination Huelsenbeck and Dyer (2004) used a model in which all unrooted 

tree topologies were uniformly likely, and branch lengths had an exponential 

distribution. When the sequences are from a single population a natural choice would 

be the coalescent (Kingman 1982a, 1982b; Hudson 1983; Griffiths and Marjoram 

1997) which models a neutrally evolving, randomly mating population of constant 

size, with or without recombination. 

 

However, ( )GP ,|ΘH  involves summation over the unknown states of internal nodes 

in the marginal genealogies (the evolutionary tree at a particular site), so the 

integration in Equation 3 cannot be solved analytically for any genealogical model, 

including the coalescent. As a result Equation 3 has to be evaluated numerically, 

which is not a trivial problem. Naïvely, 

 ( ) ( )( )�
=

Θ≈Θ
M

i

iGP
M

P
1

,|
1

| HH , (4) 

for large M, where G(i) is simulated from ( )GP . Unfortunately, for all but the simplest 

problems this method is useless because for most trees drawn from ( )GP , the 

conditional likelihood ( )GP ,|ΘH  is negligibly small. Only once in a million draws 

would the conditional likelihood contribute significantly to the sum (Stephens 2003). 

 

Importance sampling and Markov Chain Monte Carlo are methods that attempt to 

calculate Equation 4 more efficiently (see Stephens 2003). Both methods have been 

applied to a variety of contexts in population genetics (e.g. Kuhner et al. 1995, 1998, 

2000; Griffiths and Marjoram 1996; Beerli and Felsenstein 1999, 2001; Bahlo and 

Griffiths 2000; Stephens and Donnelly 2000; Fearnhead and Donnelly 2001; 

Drummond et al. 2002; Wilson et al. 2003; Coop and Griffiths 2004; De Iorio et al. 
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2005). The methodology is more tractable in the absence of recombination because 

the state space of the possible genealogies is much smaller. In the presence of 

recombination, only the simplest models with two parameters (the mutation rate and 

recombination rate) have been implemented (Fearnhead and Donnelly 2001; Kuhner 

et al. 2000). Even for a small number of sequences these methods are extremely 

computationally burdensome. In the context of the NY98 mutation model with 

variation in the selection parameter and recombination rate amongst sites, such an 

approach is not feasible. 

 

4.2.2 An approximation to the coalescent 

Instead I turn to an approximation to the coalescent likelihood in the presence of 

recombination (Li and Stephens 2003) called the PAC likelihood (“product of 

approximate conditionals”). Their approach relies on rewriting the likelihood as 

 ( ) ( ) ( ) ( )ΘΘΘ=Θ − ,,,,|,||| 121121 nn HHHHPHHPHPP ��H  (4) 

where ( )nHHH ,,, 21 �=H  is the sample of n gene sequences (haplotypes). Li and 

Stephens approximate the ( )1+k th conditional likelihood 

 ( ) ( )Θ≈Θ ++ ,,,,|ˆ,,,,| 211211 kkkk HHHHHHHHP �� π . 

The approximate conditional likelihood, π̂ , that they use is a hidden Markov model 

that is designed to incorporate some key properties of the proper likelihood, notably 

that (i) the ( )1+k th haplotype is likely to resemble the first k haplotypes but (ii) 

recombination means that it may be a mosaic of those haplotypes and (iii) mutation 

means that it may be an imperfect copy. In terms of averaging over possible 

evolutionary trees, one can think of the hidden Markov model doing so implicitly, but 

in an approximate way that is highly computationally efficient. 
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As a result of the approximate nature of the PAC likelihood, the ordering of the n 

haplotypes can influence the value of the likelihood (were it not for the 

approximation, the haplotypes would be exchangeable). Therefore, the likelihood is 

assessed by averaging over multiple orderings of the haplotypes. In the analyses I 

present throughout this chapter and Chapter 5, I use 10 orderings unless otherwise 

stated. 

 

4.2.2.1 Sampling formula with recombination 

Li and Stephens (2003) use a hidden Markov model (HMM) to approximate the 

likelihood of the ( )1+k th haplotype conditional on the first k. Theirs is an 

approximation to the sampling formula in the sense of Ewens (1972), with the 

 

Figure 4 Approximate likelihood of the orange haplotype conditional on the red, green and blue 

haplotypes. In Li and Stephens’  (2003) model, the orange haplotype resembles the others, but 

recombination means it may be a mosaic and mutation means that it may be an imperfect copy. In the top 

scenario, the orange haplotype is a mosaic of the red and blue haplotypes, necessitating a C� T mutation. 

In the bottom scenario, the orange haplotype is a copy of the blue haplotype, necessitating five mutations: 

T� C, and four C� Ts. 
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additional complication of recombination. Li and Stephens think of the ( )1+k th 

haplotype as a copy of the first k haplotypes. Figure 4 illustrates the idea. At every 

site, the orange haplotype is a copy of one of the four other haplotypes. This 

haplotype can be thought of as being closest to the orange haplotype in the 

evolutionary tree. Parsing the sequence 5  to 3 , the orange haplotype is a copy of the 

blue haplotype, so at the first polymorphic site, depending on the mutation rate, it is 

most likely to share the same nucleotide C. Continuing along the sequence, the orange 

haplotype can switch between the other four with a given probability. However, if the 

orange haplotype is a copy of the blue haplotype at site i, then it is most likely to 

continue copying the blue haplotype at site ( )1+i . This models the way that 

recombination creates mosaics of contiguous sequences. Between the first and second 

polymorphic site, the orange haplotype might switch from copying the blue to 

copying the red haplotype (Figure 4, top). In that case only one mutation need be 

invoked for the rest of the sequence. However, with some probability the orange 

continues to copy the blue haplotype (Figure 4, bottom), in which case five more 

mutation events need to be invoked. 

 

4.2.2.2 Mutation model 

In the lexicon of HMMs, the latent variable records which of the first k haplotypes the 

( )1+k th is a copy of at a given site. Conditional on the latent variable x 

( kx ,,1,0 �= ), the emission probability models the mutation process, because it 

specifies the probability of observing state ikHa ,1+=  in haplotype ( )1+k  given state 

ixHb ,=  in haplotype x, at a particular site i. Under a coalescent model (Kingman 

1981, Hudson 1983), the time (in units of PNe generations) to the common ancestor of 
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haplotypes x and 1+k  is known (R. C. Griffiths, unpublished), and to the order of the 

approximation is exponentially distributed with rate k. Consider a simple mutation 

model with two states 0 and 1, and mutation rate 
�
/2 per PNe generations. The model 

is defined by the instantaneous rate matrix 

 
2/2/

2/2/

θθ
θθ

−
−

=Q . (5) 

The matrix ( )tP  gives the probability ( )t
ijp  of a site being in state j time t after it was in 

state i. 

 ( ) QP tt e=  (6) 

(see Grimmett and Stirzaker 2001), which can be solved analytically for this model to 

give 
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The probability of observing an (unordered) pair of states ( )ba,  given the time t to 

their common ancestor for a reversible mutation rate matrix (such as Q) is 

 ( ) )2(|, t
abaab ptbaP πδ= , (7) 

where 2/110 == ππ  are the equilibrium frequencies of states 0 and 1, and 
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To obtain the probability of observing a pair of states unconditional on the time to 

their common ancestor involves the integration 

 ( ) ( ) ( )�
∞

=
0

d|,, ttPtbaPbaP , (8) 

where ( ) { }ktktP −= exp  from before. Therefore the emission probability is defined 

by 

 ( ) ( )

( )�
�
�

��
�

�

≠
+

=
+
+

=
ba

k

ba
k

k

baP
for 

2

for 
4
2

,

θ
θ

θ
θ

, 

which is normalised because ( ) ( ) ( ) 11,11,00,0 =++ PPP . Li and Stephens (2003) 

denote the emission probability 

 ( ) ( )ixiki HHPx ,,1 ,+=γ . (9) 

 

4.2.2.3 Recombination model 

The transmission probability models recombination, because it specifies the 

probability of a switch from copying one haplotype to copying another between 

adjacent sites i and (i + 1). Li and Stephens (2003) model the length of sequence 

before a switch as exponentially distributed with rate � /k. This is based on the 

informal idea that ( ) ktE /1= , so the average rate of recombination between a pair of 

sequences is roughly ( ) ( )k/22/ ×ρ . Under this crude approximation, the transmission 

probability is defined by 

 ( ) { } { }( )
{ }( )�

�
�

−
=′−+

==′=+ otherwise//-exp1

 if//-exp1/-exp
|1 kkd

xxkkdkd
xXxXP

ii

iiii
ii ρ

ρρ
 (10) 
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where Xi is the copied haplotype at site i, Xi+1 is the copied haplotype at site (i + 1), 

and di is the distance (in bp) between sites i and (i + 1). In this model there can be a 

different recombination rate � i between every pair of adjacent sites. 

 

4.2.2.4 Computing the likelihood 

To calculate the approximate conditional likelihood requires a summation over all 

possible combinations of the latent variable at every site; that is to say, all possible 

mosaics that might constitute the ( )1+k th haplotype. The advantage of the HMM is 

that this computation is fast using the forward algorithm (e.g. Rabiner 1989). Suppose 

that ( )xiα  is the joint likelihood of the first i sites and xX i = . Then the approximate 

conditional likelihood is 

 ( ) ( )�
=

+ =Θ
k

x
Lkk xHHHH

1
211 ,,,,|ˆ απ � , 

when there are L sites. From the forward algorithm, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )�
�
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� ′−+=

′==′=

�

�

=′
+

=′
+++

k

x
iiiii

k

x
iiiii

x
k

pxpx

xXxXPxxx

1
1

1
111

1
1

|

ααγ

αγα
, (11) 

where { }kdp iii /exp ρ−= . Because the second term in Equation 11 does not depend 

on x, it only needs to be computed once for each site. As a result, the computational 

complexity of the approximate conditional likelihood π̂  is linear in L and linear in the 

total sample size n. The complexity of the full PAC likelihood is, therefore, linear in L 

and quadratic in n (Li and Stephens 2003). 
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4.2.3 NY98 in the coalescent approximation 

Incorporating the NY98 mutation model in to the coalescent approximation of Li and 

Stephens (2003) is straightforward. The instantaneous mutation rate matrix Q in 

Equation 5 is replaced by that defined by Equation 1. However, the exponentiation of 

the NY98 rate matrix in Equation 6 cannot be solved analytically. Instead, a 

numerical technique known as diagonalisation is used. Equation 6 can be re-written 

using the matrix factorisation 

 ( ) 1−= VVP Dtt e  (12) 

(Grimmett and Stirzaker 2001) where V is a matrix whose columns are the right 

eigenvectors of Q, V-1 is its inverse and D is a diagonal matrix whose diagonal 

elements are the eigenvalues of Q. Exponentiation of a diagonal matrix is trivial, 

because 

 { } { }
�
�
�

≠
=

=
ji

jitd
t ij

ij for 0

for exp
exp D . (13) 

So, breaking down Equation 12 into parts for simplification, 

 ( ) 1−= MVP t  

where 

 DVM te= . 

Now, using Equation 13 and the laws of matrix multiplication, 

 { }tdvm jjijij exp=  

so 

 ( ) { } ( )�
∈

−=
Cc

cjccic
t

ij vtdvp 1exp , (14) 
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where C is the state space of Q, which consists of the 61 non-stop codons for NY98. 

Using Equation 7, the probability of observing a pair of states ikHa ,1+=  and ixHb ,=  

when the ( )1+k th haplotype is copying from the xth haplotype is, 

 ( ) ( ) { }�
∈

−=
Cc

cccbacaab tdvvtbaP 2exp|, 1πδ . 

Following Equation 8, one can obtain an expression for the HMM emission 

probability under any reversible mutation matrix Q 

 ( ) ( )
�
∈

−

−
=

Cc cc
cbacaab dk

k
vvbaP

2
, 1πδ . (15) 

 

Equation 15 is useful because it means that the PAC likelihood can be adapted to any 

reversible mutation model, of which NY98 is just an example (e.g. Rodríguez et al. 

1990; Goldman and Yang 1994; Sainudiin et al. 2005). For a particular combination 

of the mutation rate parameters � , �  and � , the rate matrix Q must be diagonalised, 

which is to say its eigenvalues and right eigenvectors must be found (Equation 12). 

This can be achieved for any general real matrix Q using a numerical algorithm, 

available in libraries such as Numerical Recipes (Press et al. 2002), LAPACK 

(Anderson et al. 1999) or NAG. See Wilkinson and Reinsch (1971) for details of the 

algorithm. One problem with the algorithm for diagonalising a general real matrix is 

that the eigenvalues and eigenvectors are not guaranteed to be real numbers. In fact 

the eigenvalues and eigenvectors of a reversible rate matrix are real. I am grateful to 

Ziheng Yang for showing how further factorisation of Equation 12 leads to 

diagonalisation of a symmetric real matrix, for which the algorithms are guaranteed to 

produce real eigenvalues and eigenvectors. The algorithm for diagonalising a 

symmetric real matrix is also quicker and safer than the algorithm for diagonalising a 
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general real matrix. The code I used for the implementation of this algorithm was 

kindly provided by Ziheng Yang. 

 

A reversible, irreducible mutation rate matrix Q, which is given by Equation 1 for 

NY98, can be re-written 

 SQ =  

where S is a symmetric matrix ( jiqs jijij ≠= ,/π , cf. Equation 1) and  is a diagonal 

matrix whose diagonal elements are the stationary frequencies � j of the rate matrix. 

The eigenvalues and eigenvectors of Q can be obtained by constructing a symmetric 

matrix 

 2/12/1 −= QA , 

because the eigenvalues of A and Q are the same (contained in the diagonal matrix 

D), and the matrix of right eigenvectors V for matrix Q is related to the matrix of right 

eigenvectors R for matrix A by the formulae 

 
.

,
2/111

2/1

RV

RV
−−

−

=
=

 

Matrices D and R are obtained by diagonalising A using the algorithm for a 

symmetric real matrix. Because R is orthogonal, TRR =−1 , so no matrix inversion is 

required for obtaining V-1. By matrix multiplication 

 ( ) 2/11

2/1

bbccb

acaac

rv

rv

π
π

=

=
−

−

. (16) 

Therefore, Equation 15 can be re-written 

 ( ) �
∈ −

=
Cc cc

bcacbaab dk

k
rrbaP

2
, 2/12/1 ππδ . (17) 

This is the actual formula used in the implementation of the model. 
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4.2.4 An indel model for NY98 

Alignments of nucleotide sequences from antigen loci are punctuated by gaps in the 

alignment caused by insertion or deletion mutations (indels). A sequence alignment is 

a statement of the homology of particular nucleotides in one sequence to those in the 

other sequences. Indels cause gaps in the nucleotide sequence alignment in multiples 

of three when the gene is functional, because otherwise a frameshift will ensue, and 

the remaining sequence will be nonsense. Indels are an important feature of the 

evolution of antigen loci, but even simple treatments of indels result in complex 

models that do not share the nice properties of the reversible nucleotide and codon 

models in common usage (e.g. Thorne et al. 1991, 1992). Here I make a very simple 

extension of NY98 in order to incorporate an extra indel state. The motivation for 

using this model is not to provide a realistic model of insertion/deletion, but to capture 

the information regarding the underlying tree structure and mode of selection at sites 

segregating for indels in the simplest possible way. The model is only applied to 

columns in the alignment that are segregating for an indel. 

 

For columns segregating for an indel, codons are assumed to mutate to the indel state 

at rate ϕωπ indel  and back at rate ( )ϕωπ indel1− . Here � indel is the equilibrium frequency 

of indels (in sites segregating for indels), ϕ  is the rate of insertion/deletion, and �  is 

the selection parameter for that site. The model can be thought of in two parts: the 

NY98 model is nested within a two state codon vs. indel model (0 = codon, 1 = indel) 

specified by 
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 ( ) ( )ϕωπϕωπ
ϕωπϕωπ

indelindel

indelindel

11 −−−
−

=∗Q . (18) 

Exponentiating Equation 18 gives the transition probability matrix between codon and 

indel states. So 

 ( )

{ }( )
( ) { }

{ }( )
( ) { }( )�

�

�

�
�

�

�

−−−
−−

−−+
−−−

=∗

codon a j and indelan  is i if

indelan  j andcodon  a is i if

indels for two

codons ed)(unspecifi for two

exp11
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t

t

t

t

p
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indelindel

indel

t
ij

ωϕπ
ωϕπ

ωϕππ
ωϕπ

. (19) 

Denote the full transition probability matrix for the NY98 model with indels P(t). 

From Equation 19, part of this matrix is apparent 

 ( )
( ) { }

{ }( )
( ) { }( )�

�

�
�

�

−−−
−−

−−+
=

codon a j and indelan  is i if

indelan  j andcodon  a is i if

indels for two

exp11

exp1

exp1

  

t

t

t

p

indelj

indel

indelindel

t
ij

ωϕππ
ωϕπ

ωϕππ
. 

When i and j are both codons, ( )t
ijp  can be found by conditioning on whether there are 

intermediate indels. Denote ( ) ( ){ }t
ij

t ν=  for the transition probability matrix of the 

NY98 model without indels. Conditional on intermediate indels, the transition 

probability from codon i to j in time t is simply � j. Conditional on no intermediate 

indels, the transition probability from codon i to j in time t is ( )t
ijν . Since the 

probability of no intermediate indels is { }ϕωπ indelexp − , for a pair of codons 

 ( ) ( ) { } { }( ) { }[ ]ϕωπωϕππϕωπν indelindel expexp11exp −−−−−+−= tp indelj
t

ij
t

ij . 

Using Equations 8, 14 and 16 the emission probabilities for the PAC likelihood are 

obtained. For two identical codons 

( ) ( ) ( ) 
�

�
�
�

�

−+
+

+
−

+
+−−= �

∈Cc ccindel
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k

k
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22
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22
11, 2

ωϕππωϕπωϕ
ππππ

 

  (20a) 

where C is the state space of the NY98 model.  For two non-identical codons
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( ) ( ) ( )
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  (20b) 

For two indels 

 ( ) ( )
ωϕ

πππ
2

1
, 2

+
−

+=
k

k
aaP indelindel

indel . (20c) 

For a codon a and an indel b 

 ( ) ( ) �
�

	


�

�

+
−−=

ωλ
πππ

2
112,

k

k
baP indelba . (20d) 

 

4.2.5 Variation in  and  along a gene 

The primary aim of the new method is to obtain posterior distributions for �  and � , 

allowing both to vary along the length of the sequence. The information regarding 

either �  or �  at a given position along the sequence is limited by the number of 

mutations in the underlying evolutionary history. This is a potentially serious 

limitation, particularly for sequences with low diversity. In an attempt to exploit to the 

full the available information, I use a independent prior distributions on �  and �  in 

which adjacent sites may share either parameter in common. I will describe the model 

of variation in �  for the purposes of information. The model of variation for �  is of 

the same form. 

 

For a sequence of length L codons, the prior distribution imposes a ‘block-like’  

structure on the variation in �  with two fixed and B�  ( )10 −≤≤ LBω  variable 

transition points, 

 ( ) ( )110 ,,, +=
ω

ω
B

B sss �s , 
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where ( ) ( )Lsssss BB =<<<<<= +1210 0
ωω� . 

Block j is delimited by transition points ( )1, +jj ss  and has a common selection 

parameter jω . I model the number of variable transition points in the region as a 

binomial distribution with parameters ( )ωpL ,1− . Given the number of transition 

points, the selection parameter for each block is independently and identically 

distributed. For an exponential prior on jω  with rate parameter � , the prior 

distribution on the transition points and selection parameters can be written 

 ( ) ( )( ) ( ) ( ){ }
ω

ωωωωω ωωωλλωω B
BBLBBB ppBP +++−−= +−−

�10
11 exp1,,s  (21) 

In this model, the expected length of a block is [ ]( ) ωω ppLL /111/ ≈+− . For 0=ωp  

there is a single block, producing a constant model for �  along the sequence, and for 

1=ωp  every site has its own independent � . 

 

This prior structure is based on the multiple change-point model of Green (1995) 

which was adopted by McVean et al. (2004) to estimate variable recombination rates 

along a gene sequence, although the binomial model that I have used here is designed 

specifically so that transition points must fall between codons at a finite ( 1−L ) 

number of positions. I implement a block-like prior on �  of the same form as for � , 

but the block structure for �  is independent of the block structure for � , and the 

number of variable transition points is binomially distributed with parameters 

( )ρpL ,2− . It is assumed that recombination only occurs between codons and not 

within. To perform inference jointly on variation in �  and �  along the sequence I will 

use reversible-jump MCMC. 
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4.3 Bayesian inference 

To summarise, Tables 1 and 2 list the constants and parameters of the model. The 

parameters together in Table 2 are denoted , and the aim of Bayesian inference is to 

obtain a posterior distribution of  given the data H. To do so I will use Markov 

Chain Monte Carlo (MCMC; see for example O’Hagan and Forster [2004] for 

Table 1 Notation used for Constants 

n Sample size 

L Number of codons 

P Ploidy 

Ne Effective population size 

 

Table 2 Parameters of the Model 

µ  Rate of synonymous transversion per PNe generations 

κ  Transition:transversion ratio 

ωB  Number of changes in the dN/dS ratio along the sequence 

( ) 10, += ω
ω Bjs B

j �  Positions at which the dN/dS ratio changes along the sequence 

ωω Bjj �0, =  dN/dS ratio between sites ( )ω
js  and ( )ω

1+js  

ρB  Number of changes in the recombination rate along the sequence 

( )
10, += ρ

ρ Bjs B
j �  Positions at which the recombination rate changes along the sequence 

ρρ Bjj �0, =  Recombination rate between sites ( )ρ
js  and ( )ρ

1+js  

ϕ  Rate of insertion/deletion per PNe generations 
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details). In brief, the Markov chain is initiated using values taken at random from the 

priors. Each iteration of the chain one or more parameters are updated according to a 

proposal distribution, and the proposal is accepted with the acceptance probabilities 

specified in the next section. There are nine moves that can be proposed, each of 

which is visited with the relative probability specified in Table 3. This is known as a 

random sweep. Moves of type A and B (Table 3) are Metropolis-Hastings (Metropolis 

et al. 1953; Hastings 1970) moves that change a single parameter at a time. Moves of 

type C and D are complementary reversible-jump moves (Green 1995). For the 

purpose of illustration, I will describe one each of move types A-D, and assume that 

the prior on the � j’s specifies i.i.d. exponential distributions with rate 
�
. The moves 

below describe in full how variation in �  along the sequence is explored by MCMC. 

 

Table 3 MCMC Moves 

Type Move 
Relative proposal 

probability 

A Change �   

A Change �   

A Change �   

A Change �  within a block  

A Change �  within a block  

B Extend an �  block 5  or 3   

B Extend an �  block 5  or 3   

C/D Split or merge �  blocks  

C/D Split or merge �  blocks  
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4.3.1 Type A. Change  within a block 

Metropolis-Hastings move 

 

A block is chosen uniformly at random. A new value �  is proposed so that 

( )Uexpωω =′  where U ~ Uniform(-1,1). Thus ee 1 ωωω <′<− . The acceptance 

probability is given by the Metropolis-Hastings ratio 

 ( ) ( )
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|

|
,1min

H
Hα , 

where ( )Θ′→ΘK  is the proposal kernel density. To find K, note that 
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1
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This gives an acceptance probability of 

 ( ) ( )
( ) ( ){ }

�
�
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�
�
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Θ
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ω
ωωωλα exp

|

|
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P
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4.3.2 Type B. Extend an  block 5  or 3  

Metropolis-Hastings move 

 

The block to extend is chosen uniformly at random, and for each block the direction is 

chosen with equal probability. If the 5 -most or 3 -most block is chosen to be extended 

5  or 3  respectively, the move is rejected. The number of sites to extend the block, 

[ )∞∈ ,1g  is chosen from a geometric distribution with some parameter. If extending 

the block g sites in the chosen direction would cause it to merge with the adjacent 

block, the move is rejected. 

 

The proposal distribution is symmetric, so the Hastings ratio is one. The ratio of priors 

is also one because the prior on the positions of the transition points is uniform. 

Therefore 

 ( ) ( )
( ) ��

�

�
�
�

Θ
Θ′

=Θ′→Θ
|

|
,1min

H
H

P

P
Bα . (23) 

 

4.3.3 Types C and D. Split and Merge an  block 

Reversible Jump moves 

 

The acceptance probability for a reversible jump move (Green 1995) is 

 ( ) ( )
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Here ( )Θmj  is the probability of proposing move m when at state Θ , and ( )Umg  is 

the joint probability density of the random vector U which is generated to facilitate 
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the transformation from ( )U,Θ  to ( )U′Θ′, . The last term in the acceptance 

probability is the determinant of the Jacobian of the diffeomorphism (the 

transformation which must be differentiable in both directions). 

 

4.3.3.1 Ratio of priors 

In move C a block that currently has length ( )jj ss −+1  is split at position s*, and its 

current selection parameter jω  is transformed, with the aid of a random variable U, 

into two new parameters jω′  and 1+′jω . The ratio of priors is 

 ( ) ( ){ }jjjp

p ωωωλλ
ω

ω −′+′−
− +1exp

1
. 

In move D two adjacent blocks that currently have lengths ( )jss −*  and ( )*1 ss j −+  

are merged, and their selection parameters jω  and 1+jω  are transformed into a single 

parameter jω′ . So the ratio of priors is 

 
( ) ( ){ }1exp
1

+−−′−
−

jjjp

p ωωωλ
λω

ω . 

 

4.3.3.2 Ratio of proposal probabilities 

Move C splits an existing block. When there are ( )1+ωB  blocks there are 

( )1−− ωBL  possible positions at which a block could be broken. The position of the 

split, s*, is chosen uniformly at random from these. Move type Ci splits the block that 

spans position i; only ( )1−− ωBL  out of the total possible 1−L  type C moves are 
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available at any one time. So ( ) ( )1C −−=Θ ωBLcj Bi
, where cB is the total rate at 

which type C moves are proposed when there are ( )1+ωB  blocks. 

 

Move D merges two adjacent blocks. Assuming that the block merges with its 3  

neighbour, there are B �  possible mergers. The merger is chosen uniformly at random 

from these B�  possibilities. So ( ) ωBdj Bi
=ΘD , where dB is the total rate at which 

type D moves are proposed when there are ( )1+ωB  blocks. 

 

Following Green (1995), when there are B�  transition points, moves C and D are 

proposed with relative probabilities Bc  and Bd , where 
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Under the prior, the number of transition points B �  is distributed binomially. This 

yields 
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4.3.3.3 Ratio of density functions 

In transforming jω  to jω′  and 1+′jω , it is necessary to introduce a random deviate U to 

match the dimensionality on both sides. So the transformation ( ) ( )1,, +′′→ jjj U ωωω  

involves the generation of a random deviate U in move C, but not in the inverse move 

D. This simplifies ( ) ( )UU CD gg ′  to ( )UgC1 . Since U is chosen uniformly on ( )1,0 , 

this ratio equals one. 
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4.3.3.4 Jacobian 

In Move C the values of the selection parameters for the two resulting blocks, ��� j and 

���
j+1 are chosen from the current value of � j so that the weighted geometric mean is 

preserved. The weighting takes into account the relative sizes of the two resulting 

blocks, which are ( )jss −*  and ( )*1 ss j −+  respectively. Thus 
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To introduce a random element, 
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where U ~ Uniform(0,1). The determinant of the Jacobian is, 
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To obtain J, it is necessary to express jω ′  and 1+′jω  in terms of jω  and U, giving 
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where ( ) ( )jjj ssssa −−= +1* . The determinant of the Jacobian (which is defined to 

be always positive) comes out as 
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4.3.3.5 Acceptance probabilities 

For move C, 
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  (24) 

For move D, 
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Table 4 Structure of the omegaMap program 

File Function # Lines 

main.h Header file for main.cpp 6 

omegaMap.h Header file for omegaMap.cpp 361 

main.cpp Program control 30 

omegaMap.cpp Read in command line and configuration file 

options. Allocate memory. Initialize the MCMC 

chain. 

1164 

likelihood.cpp Calculate the likelihood. Forward and backward 

algorithm. Build the mutation rate matrix. 

726 

mcmc.cpp Controls the MCMC scheme. Proposes moves. 

Calculates acceptance probabilities. 

1514 

io.cpp Outputs MCMC chain in text format and encoded 

format. Functions for reading in MCMC chain 

from encoded format. 

504 
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Table 5 Utilities used by omegaMap 

File Function # Lines 

argumentwizard.h Utility for reading in command line options. 215 

controlwizard.h Utility for reading in configuration files. 659 

dna.h Functions for reading in FASTA files and storing 

DNA sequences. 

486 

lotri_matrix.h Lower triangular matrix class. 144 

matrix.h Matrix class. 226 

myerror.h Error and warning functions. 33 

myutils.h Links these various utility files. 35 

random.h Random number generation. 520 

utils.h Various utilities. 29 

vector.h Vector class. 133 

 

Table 6 PAML package, linked to by omegaMap 

File Function # Lines 

paml.h Header file for tools.c 335 

tools.c PAML functions 4369 

PAML was written by Ziheng Yang and is available from 

http://abacus.gene.ucl.ac.uk/software/paml.html 
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4.3.4 Implementation 

I implemented the likelihood calculation and inference scheme in C++. The program, 

called omegaMap, was built up progressively, from testing the likelihood function on 

simple examples that could be verified using a calculator, to a Metropolis-Hastings 

MCMC scheme without variation in �  and � , to the full reversible-jump MCMC 

scheme. The code was developed using Microsoft Visual C++ and then switched to 

Linux gcc for testing on datasets of realistic size. The MCMC scheme was debugged 

principally by using a flat likelihood, in which case one expects to recover the prior 

from the posterior. This proved important when, having moved from a dual-node 64-

bit AMD machine (mcv1@stats.ox.ac.uk) I recompiled the program on a multi-node 

64-bit AMD machine (genecluster@stats.ox.ac.uk), the posterior began to produce a 

systematic bias in the recombination rate estimates, so that rates declined 5 -3 , even 

when the same sequence was reversed. Using a flat likelihood revealed that there was 

a numerical inconsistency, probably caused by a difference in compilers on the two 

machines. The problem was solved in a makeshift fashion by running the executable 

compiled on mcv1 on genecluster. This was a compromise because the executable 

compiled on mcv1 ran somewhat slower on genecluster than the executable compiled 

on genecluster. This is a cause for concern because the expectation is that C++ code is 

portable between machines and compilers. As a result when the code is distributed I 

will stress the need to test the program by compiling it first with flat likelihoods 

(which can be done using the flag –D _TESTPRI OR) and ensuring the prior is 

recovered from the posterior.  
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Tables 4-6 show the structure of the omegaMap program. In total there are 6,785 lines 

of novel code (Tables 4 and 5). omegaMap uses some functions in the PAML package 

(Table 6), written by Ziheng Yang. PAML (Phylogenetic Analysis by Maximum 

Likelihood) is freely available from http://abacus.gene.ucl.ac.uk/software/paml.html. 

In addition, many functions in the C++ standard template library are used, so the total 

size of the code is unknown. omegaMap can output the results in two formats. The 

first is a tab-delimited text file with a column for each parameter in the model and a 

number of other diagnostics such as the acceptance probability and computational 

time. The thinning interval dictates the number of iterations before the parameter state 

is output. This text file can be read by software such as R or Excel. However, 

outputting the entire MCMC chain using a thinning interval of one creates an 

enormous text file with a great deal of redundancy because only a subset of the 

parameters are changed in any iteration. Therefore omegaMap can output in a second 

format, an encoded version of the MCMC chain. The program analyse (Table 7) can 

read this file, reconstruct the MCMC chain internally (orders of magnitude faster than 

the original MCMC chain was generated) and output a text file for use with R or 

Excel. 

 

Table 7 Structure of the analyse program 

File Function # Lines 

analyse.h Header file for analyse.cpp 45 

main.cpp Program control 73 

analyse.cpp Functions for reconstructing the MCMC chain 

based on an encoded file. 

411 
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4.4 Simulation study 

To investigate the performance of the method, I undertook two simulation studies. In 

one data was simulated with variation in the selection parameter along the sequence, 

and a constant recombination rate. In the other, data was simulated with variation in 

the recombination rate along the sequence, and a constant selection parameter. Each 

study consisted of simulating 100 datasets of 20=n  sequences each of length 

200=L  codons using the coalescent with recombination (Hudson 1983, Griffiths and 

Marjoram 1997) and the NY98 mutation model. Every simulated dataset was analysed 

twice, using 250,000 iterations of the MCMC and a burn-in of 20,000 iterations. 

Initial values were chosen randomly from the priors independently for the two runs. 

The runs were compared for convergence and merged to obtain the posterior 

distributions. 

 

4.4.1 Permutation test for recombination 

Before the datasets were analysed, each was subjected to a permutation test for 

recombination (McVean et al. 2001; Meunier and Eyre-Walker 2001). Phylogenetic 

analysis is inappropriate for gene sequences taken from populations that are 

demonstrably recombinogenic. The aim of the permutation tests was to demonstrate 

the recombinogenic nature of the data. 

 

The permutation test is a goodness-of-fit test for the model of no recombination. 

When there is no recombination, there ought to be no correlation between physical 

distance and LD, so sites are exchangeable. It should be noted that sites are also 

exchangeable in the case of complete linkage equilibrium. If LD tails off with 
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physical distance then recombination must have occurred in the ancestral history of 

the sequences. The test proceeds as follows 

1. The observed correlation between a measure of LD and physical distance is 

recorded as obsc . 

2. The nucleotide positions are reordered at random and the correlation between 

LD and physical distance is calculated. 

3. Step 2 is repeated 999 times. 

Three measures of LD can be used: 2r (Hill and Robertson 1968), D′  (Lewontin 

1964) and the four-gamete test (G4; Hudson and Kaplan 1985). In section 2.3.2 

cor(r2,d), where d is physical distance, was used for testing the goodness-of-fit of the 

standard neutral coalescent. If obsc  lies in the tail of the reference distribution then the 

model of exchangeability of sites is not a good fit to the data, and we can conclude 

that there is good evidence for recombination in the data. The probability of obtaining 

a result as extreme as observed under the model can be expressed as a p value, where 

p is estimated to be 

 
1

1

+
+=

N

n
p  

(Sokal and Rohlf 1995). Here n is the number times a value more extreme than obsc  

was observed out of a total of N simulations. 

 

Using p values to reject a “null”  model might seem to be a particularly frequentist 

thing to do. In fact a frequentist p value and a Bayesian posterior predictive p value 

(Rubin 1984) are equivalent in the model of exchangeability described here, because 

the model has no parameters. I will discuss the use of posterior predictive p values for 

goodness-of-fit testing more in chapter 5. 
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4.4.2 Simulation study A 

This study was designed to simulate data with variation in �  but not in � . I varied �  

between 0.1 and 10, as shown by the red line in Figure 5a. I created more fine detail 

in variation in �  for �  > 1 because, biologically, a scenario in which there is an 

excess of non-synonymous relative to synonymous polymorphism is of greater 

interest. For the same reason �  is plotted on a natural, rather than a logarithmic scale. 

The mutation parameters were set at 7.0=µ  and 0.3=κ , which gives 1.0=Sθ . The 

recombination rate was set constant at 1.0=ρ , giving a total recombination distance 

for the region of 9.19==� ρR . The mutation and recombination parameters were 

chosen to mimic those estimated for the housekeeping genes of Neisseria meningitidis 

(see Chapter 1). Exponential distributions were used for the priors on � , � , �  and � , 

with means 0.7, 3.0, 1.0 and 0.1. 

 

Permutation tests showed that phylogenetic analysis of these datasets was 

inappropriate because of the presence of recombination. The number of datasets for 

which the p-value was less than 0.05 was 99, 93 and 93 for the three measures of LD 

( 2r , D′  and G4) respectively. 
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Figure 5a shows the average over the 100 simulated datasets of the mean and 95% 

highest posterior density (HPD) interval for the posterior distribution of �  at each site. 

The average mean posterior density follows the truth closely. Likewise the average 

95% HPD interval generally encloses the true value of � . As expected, the effect of 

fitting a prior with mean 1 was to cause the posterior to underestimate �  when 1>ω  

 

 

Figure 5 Results of simulation study A. (a) Average posterior of � , (b) coverage of �  and (c) average 

posterior of � . In (a) and (c) the red line indicates the truth, the black line indicates the average mean 

of the posterior and the green lines indicate the average 95% HPD interval of the posterior. The 

averages are taken over 100 simulated datasets. In (b) coverage is defined as the proportion of the 100 

datasets for which the 95% HPD interval encloses the truth. 
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and overestimate �  when 1<ω . The effect is not great except for the most extreme 

values where 10=ω . 

 

However, even where the average 95% HPD interval encloses the truth, that does not 

mean the 95% HPD interval encloses the truth for all simulated datasets. Figure 5b 

shows the relevant quantity, the coverage of � , for each site. Coverage is defined here 

as the proportion of datasets for which the 95% HPD interval encloses the truth. Half 

of sites have coverage better than 93%, and 95% of sites have coverage better than 

66%. If a false positive is defined as the lower bound of the 95% HPD interval 

exceeding 1 when in truth 1≤ω , then the false positive rate was 0.5%. The estimate 

of the synonymous transversion rate �  exhibits upward bias (average 0.90), with 63% 

coverage (Table 8), and the transition-transversion ratio �  is estimated to be 3.1 on 

average, with 91% coverage. 

 

Consistent with the findings of Li and Stephens (2003), I observed that the 

recombination rate estimator has a small upward bias (Figure 5c). The average mean 

posterior is almost flat, and the average 95% confidence intervals enclose the truth 

completely, suggesting that the estimator is good notwithstanding its bias. The 

Table 8 Summary of posteriors for simulation study A 

  Prior  Average posterior  

Parameter   Truth   Mean   Lower 95% HPD Mean Upper 95% HPD   Coverage 

µ   0.7  0.7  0.7 0.9 1.1  0.63 

κ   3.0  3.0  2.3 3.1 3.9  0.91 

R    19.9   19.9   22.4 33.3 44.7   0.43 
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coverage is almost constant across sites at 95%. Table 8 shows that the estimate of the 

total recombination distance, R, is also upwardly biased. Coverage of R, however, was 

only 43%, suggesting that the good coverage for �  at individual sites may be in part 

because of poor information. Importantly, Figures 5a and 5b show that the effect of 

the selection parameter on the estimate of �  is negligible, indicating that inference on 

�  is not confounded by � . 

 

4.4.3 Mixing properties of reversible jump moves 

Achieving satisfactory acceptance probabilities can be an issue in reversible-jump 

MCMC (Green 1995). This was not found to be a problem in the MCMC scheme 

Table 9 MCMC Moves Acceptance Probabilities 

Type Move 
Mean acceptance 

probability �  

A Change �  0.139 

A Change �  0.157 

A Change �  within a block 0.573 

A Change �  within a block 0.727 

B Extend an �  block 5  or 3  0.403 

B Extend an �  block 5  or 3  0.825 

C Split an �  block 0.381 

D Merge �  blocks 0.242 

C Split a �  block 0.635 

D Merge �  blocks 0.660 
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presented here. For illustrative purposes, Table 9 shows the acceptance probabilities 

for the MCMC moves, averaged over a pair of independent analyses of the same 

dataset from simulation study A. The reversible-jump moves (those of type C or D) 

had high acceptance probabilities (for example, �  = 0.381 when splitting an �  block 

and �  = 0.242 when merging �  blocks). Of the other moves, acceptance probabilities 

ranged from 0.139 to 0.825. The lowest acceptance probabilities were for moves 

changing �  and �  (�  = 0.139 and 0.157 respectively), perhaps because these changes 

affect all sites in the sequence unlike any other move. Changes to moves involving �  

had high acceptance probabilities (�  = 0.635 to 0.825), which may be indicative of the 

low information regarding variation in recombination rate within the region. 
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In Figure 6 the mixing properties of the two chains for the same dataset are shown. 

Figure 6a shows the convergence of the two chains for the posterior distribution on �  

across sites. The mean and upper and lower 95% HPD bounds are indicated. One 

chain is plotted in red, the other in green. The agreement is good; more so for the 

mean than the 95% HPD bounds. One would expect estimates of the latter to have 

greater variance. Figure 6b is a trace of B �  through iterations of one of the Markov 

chains, and 6c is the corresponding trace of B� . B �  and B�  can only be changed by 

reversible-jump moves. There is no evidence of poor mixing in either of the traces. 

Figure 6d shows a histogram of the posterior distribution of B �  for both the chains 

 

Figure 6 a Convergence of the mean and upper and lower 95% HPD bounds of the posterior on �  for two 

analyses (red and green lines) of the same dataset from simulation study A. b Trace of B�  for one of the 

two analyses. c Trace of B�  for one of the analyses. d Convergence of the posterior distribution of B�  for 

the two analyses (red and green histograms). 
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(one in red, the other green). The two appear to converge well throughout the 

distribution. When the chains are merged the variance in the estimate of the posterior 

will be reduced. However, if this were an analysis of a real dataset of special interest, 

rather than one of a hundred simulated datasets, then there is some argument for 

running the two chains longer to further improve convergence. 

 

4.4.4 Simulation study B 

This study was designed to simulate data with variation in �  but not in � . Along the 

sequence �  was allowed to vary at 0.005, 0.1, 0.5 and 1, for which one would expect 

0.018, 0.35, 1.8 and 3.5 recombination events respectively per site in the ancestral 

history under a coalescent model (Griffiths and Marjoram 1997). The total 

recombination distance was 5.37=R . I let 6.3=µ  and 0.3=κ  giving 5.0=Sθ , and 

a constant selection parameter of 2.0=ω . Exponential distributions were used for the 

priors on � , � , �  and � , with means 3.6, 3.0, 1.0 and 0.2. 

 

Permutation tests showed that these datasets were not amenable to phylogenetic 

analysis because of the presence of recombination. All 100 datasets yielded p-values 

less than 0.05 for all three measures of LD. 
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Variation in the recombination rate was detected by the new method, as seen in Figure 

7a. The average over the 100 datasets shows that the mean and 95% HPD interval for 

the posterior distribution of �  at each site pick up the rate variation, but not to the full 

extent. As a result, the coverage shown in Figure 7b is generally good, on average 

85%, but performs worst for the most extreme peak in rate between sites 41 and 55, 

where it consistently underestimates the height. The properties of the estimate of the 

 

 

Figure 7 Results of simulation study B. (a) Average posterior of � , (b) coverage of �  and (c) average 

posterior of � . In (a) and (c) the red line indicates the truth, the black line indicates the average mean 

of the posterior and the green lines indicate the average 95% HPD interval of the posterior. The 

averages are taken over 100 simulated datasets. In (b) coverage is defined as the proportion of the 100 

datasets for which the 95% HPD interval encloses the truth. 



 

 225 

total recombination distance R (Table 10) are similar to those in simulation study A. 

There is a tendency to overestimate (average 50.9) and as a result coverage is 49%. 

This bias could be corrected empirically, as in Li and Stephens (2003). Nevertheless, 

there is power to detect rate variation on such fine scales. The extent to which the 

posteriors underestimate the deviations from the mean recombination rate reflects the 

constraining effect of the prior when the signal in the data is weak. 

 

Figure 7c shows that on average the estimates of �  are very close to the truth, with the 

average 95% HPD intervals completely enclosing the true value. Along the sequence, 

the estimates are flat, with mean 0.21 and coverage 90%. The false positive rate was 

zero. Reflecting simulation study A, there was no evidence that variation in the 

recombination rate confounded inference on the selection parameter. Table 10 shows 

that there was some upward bias in the mean estimate of 1.4=µ , with 58% coverage, 

and the transition-transversion ratio was estimated to be 3.2 on average, with 89% 

coverage. Most importantly, both simulation studies show that when there is variation 

in �  or �  it can be detected, when there is no variation none is detected, and there is 

little or no confounding between �  and � . 

Table 10 Summary of posteriors for simulation study B 

  Prior  Average posterior  

Parameter   Truth   Mean   Lower 95% HPD Mean Upper 95% HPD   Coverage 

µ   3.6  3.6  3.4 4.2 5.1  0.53 

κ   3.0  3.0  2.5 3.1 3.8  0.95 

R    37.5   39.8   37.4 50.9 65.0   0.49 
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4.5 Summary 

In this chapter I have described a new model for detecting immune selection in 

nucleotide sequences, based on an approximation to the coalescent. The model uses 

the NY98 codon model of molecular evolution which incorporates the ratio of non-

synonymous to synonymous substitution, dN/dS. Values of dN/dS less than one are 

interpreted as purifying selection imposed by functional constraint and values greater 

than one are interpreted as diversifying selection imposed by interaction with the host 

immune system. Those sites under strong diversifying selection are predicted to be the 

major determinants of immunogenicity for the gene product. In order to exploit 

information about the underlying tree structure and mode of selection at sites 

segregating for insertions/deletions, I have described a simple extension to the NY98 

mutation model. I have proposed a model for the variation in the dN/dS ratio and 

recombination rate along a sequence and a reversible-jump MCMC scheme for 

exploring that variation. The primary aim of the Bayesian inference framework 

described is to obtain a posterior distribution for the dN/dS ratio and recombination 

rate for every site along the sequence, but the underlying mutation rate, 

transition:transversion ratio and rate of insertion/deletion are also estimated. Finally I 

performed simulation studies to assess the performance of the inference method for 

two caricatures of variation in the dN/dS ratio and recombination rate. The method 

was found to have good coverage for the dN/dS ratio, but some upward bias in 

estimates of the recombination rate, in agreement with previous work. Most 

importantly, the simulation studies showed that when there is variation in the dN/dS 

ratio or recombination rate it can be detected, when there is no variation none is 
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detected, and there is little or no confounding between dN/dS and the recombination 

rate. 

 

In the next chapter I will apply the new method to the porB locus of N. meningitidis, 

which encodes the antigenic PorB outer membrane protein. I will give a brief 

background to porB and the results of previous phylogenetic estimates of variation in 

the dN/dS ratio at the locus. In order to verify the conclusions of the porB analysis 

with the new method, I will apply a variety of model criticism techniques including 

prior sensitivity analysis and goodness-of-fit testing. Goodness-of-fit testing requires 

datasets to be simulated under the new model, so I will describe how to do that. I will 

briefly investigate the effect of violating the coalescent assumption of random 

sampling by comparing datasets of porB that represent a random and non-random 

sample. Finally, I will compare the results of the new method to previous 

phylogenetic methods to look for evidence of false positives caused by the assumption 

of no recombination. 

 


