Chapter 4

Evolutionary Model of Immune Selection

For a parasite such as Neisseria meningitidis, the key to long-term persistence is the
successful and ongoing colonisation of a host. Despite its notorious pathogenicity, N.
meningitidis normally resides as a commensal of the nasopharynx, but that is not to
say that N. meningitidis is an onlooker in the co-evolutionary arms race between the
host immune system and microbial intruders. Antigenic variation is a distinguishing
feature of meningococcal populations, indicating that the observed genetic diversity at
these loci is caused by strong selective pressures. Indeed, the patterns of genetic
variation in samples of antigen gene sequences can be used to locate individual sites

that interact directly with the host immune system.

Current methods that attempt to identify sites that interact with the immune system
are based on reconstructing the phylogenetic tree of the gene sequences. In a highly
recombining organism such as N. meningitidis, phylogenetic methods are not
appropriate because there may be multiple trees along the sequence. In the presence of
high levels of recombination phylogenetic methods that attempt to detect positive
selection can have a false positive rate of up to 90% (Anisimova et al. 2003; Shriner
et al. 2003). In this chapter | will begin by discussing the background to the dN/dS
ratio (section 4.1.1), and the current phylogenetic methods for detecting immune
selection (section 4.1.2). In section 4.2 | present a new population genetics model of
immune selection in the presence of recombination, based on an approximation to the

coaescent (Li and Stephens 2003). | also describe a model for variation in selection
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pressure and the recombination rate within a gene, which is novel in the context of
detecting selection. In section 4.3 | describe how to perform Bayesian inference on
the selection and recombination parameters under the new model, using reversible-
jump Markov chain Monte Carlo (MCMC). Then in section 4.4, | use a simulation
study to investigate the properties of the inference method under two scenarios and
demonstrate that the new method has the power to detect variability in selection
pressure and recombination rate, and does not suffer from a high false positive rate. In
Chapter 5 1 apply the new method to the porB locus of N. meningitidis which encodes
the PorB outer membrane protein. | use prior sensitivity analysis and model criticism
techniques to verify the inferences, and compare the results to those obtained with

phylogenetic methods.

4.1 ThedN/dSratio

4.1.1 Modelsthat incorporate the dN/dSratio

As an indicator of the action of natural selection in gene sequences the ratio of non-
synonymous to synonymous substitutions (dN/dS) is a versatile and widely-used
method of summarising patterns of genetic diversity. When comparing a pair of
nucleotide sequences, synonymous substitutions refer to those codons that differ in
their nucleotide sequence but not in the amino acid encoded. Non-synonymous
substitutions refer to those codons that differ both in nucleotide sequence and amino
acid encoded. In Figure 1 there are nine possible single nucleotide mutations of the
triplet CTT, two of which are synonymous because leucine is still encoded, the other

seven of which are non-synonymous.

177



Phe

Leucine lle

Val
Ser
Tyr
Cys
Phe

Leu

A4 4@>F0-d44
Q>0+ -44

T
A
G
C
C
C
C
C
C

Leu

Figure 1 Synonymous and non-synonymous single nucleotide mutations from CTT.

In a strictly neutral model in which single nucleotide mutations occur at a uniform
rate, non-synonymous mutations would occur more frequently than synonymous
mutations, because there are more potential non-synonymous changes. The dN/dS
ratio measures the relative rate at which non-synonymous and synonymous changes
occur, adjusting for the fact that there are more potential non-synonymous changes. In
astrictly neutral model of evolution, the dN/dS ratio equals one. The dN/dSratio is an
indicator of natural selection, because deviations from a ratio of one suggest that

nucleotide changes that alter the amino acid sequence are more or less frequently

observed than those that do not.
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Figure 2 In samples of gene sequences the effects of mutation and selection on patterns of genetic
diversity are confounded. For example, non-synonymous polymorphism might be under-represented

because of purifying selection.

4.1.1.1 Purifying selection and dN/dS

Figure 2 illustrates how the observed patterns of synonymous and non-synonymous
polymorphism represent a confounding between the evolutionary processes of
mutation and natural selection. For example, it is generally assumed in studies of
adaptation that organisms are optimally adapted to their environment (Dawkins 1982).
This is a reasonable assumption because over long periods of time natural selection
favours variants that have a selective advantage. If a gene is adapted to its
environment, even if it is not optimally adapted, then there will be a great many more
worse aternative sequences than better aternative sequences. So, random mutation
will tend to produce less-well adapted sequences, not better adapted sequences. As a
result of natural selection, those sequences that have reduced survival or reproductive
success will be under-represented in a sample taken from the population. None of this
applies to synonymous changes, of course, which do not ater the amino acid

sequence of the gene product. As a result it is reasonable to expect that purifying, or
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negative, selection will cause non-synonymous variants to be under-represented
relative to synonymous variants, and the dN/dS ratio will be less than one in a

functional gene. Thisis known asfunctiona constraint.

The fact that mutation and natural selection are confounded in genetic samples serves
as the basis for a class of evolutionary models of selection. Models of selection that
describe the movement of alleles through the population (e.g. Fisher 1930) are not
easily amenable to inference because for each site and each allele the selective
advantage conferred by that alele (the selection coefficient), the time since the allele
arose, and the way in which selection coefficients interact across sites, all need to be
specified, resulting in a great many parameters. Such models exist, usually they make
assumptions to reduce the number of parameters, but the inference methods are
computationally prohibitive even when recombination is not modelled (e.g. Coop and
Griffiths 2004). Evolutionary models that deliberately confound mutation and natural
selection (Goldman and Yang 1994; Nielsen and Yang 1998; Sainudiin et al. 2005)
use a single selection parameter for each site, the dN/dS ratio. In these models natural
selection is treated as a form of mutational bias, so that if the dN/dS ratio is less than

one then non-synonymous mutations simply occur at alower rate.

In the codon model of Nielsen and Yang (1998), hereafter NY 98, the mutation rate

from codonitoj (i # j), which | will measure in units of PN, generations (where P is

the ploidy and N the effective population size) is
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Figure 3 There are two classes of nucleotides, purines (adenosine and guanine) and pyrimidines (thymine,
cytosine and uracil). Single nucleotide mutations that do not change the nucleotide class are called
transitions, and those that do are called transversions. For any nucleotide there are two possible
transversions and one transition. Despite this, transitions are observed more commonly than transversions,

50 the transition:transversion ratio « is usually greater than two.

1 if i and j differ by asynonymoustransverson
K if i and j differ by asynonymoustransition
a; =7TU w if i and j differ by anonsynonymoustransverson, (1)
Kw if i and j differ by a nonsynonymous transition
0 otherwise

and g, = _Zm d; » where the frequency of codon j is 77, x is the relative rate of

transitions to transversions (defined in Figure 3), and w is the dN/dS ratio. If there
were equal codon usage (i.e. 77; =1/61 because only the 61 non-stop codons are
allowed in NY98) the total rate of synonymous mutation (per PN, generations) would
be approximately,

6, _ (6+5«)u @
2 310

181



4.1.1.2 Positive selection and dN/dS

When organisms are already well-adapted to their environment natural selection will
purge the population of less-fit variant genes so non-synonymous polymorphism is
under-represented relative to synonymous polymorphism and dN/dS<1. The
converse scenario, in which non-synonymous polymorphism is over-represented
relative to synonymous polymorphism and dN/dS > 1 needs careful interpretation. An
excess of non-synonymous polymorphism implies that there is a selective advantage
to novelty in the amino acid sequence. It might be envisaged that recurrent, adaptive
change in a gene will manifest itself as an over-representation of non-synonymous
relative to synonymous change because positive selection will drive the adaptive
variants to high frequency. Such a model has been used to detect natural selection
between species, because it is assumed that multiple adaptive changes are important
during speciation (McDonad and Kreitman 1991; Shpaer and Mullins 1993; Long

and Langley 1993).

However, some controversy surrounds the generality with which adaptation leads to
an excess of non-synonymous polymorphism. When positive dN/dS is observed, it is
likely that multiple compensatory, or complementary, changes at severa sites in the
gene have occurred as aresult of adaptation. So an excess of non-synonymous relative
to synonymous polymorphism is a clear signal of adaptive change, or positive
selection. But a single adaptive substitution at a particular codon is not sufficient to
generate a positive dN/dS ratio across a whole gene if much of the gene is
functionally constrained. So the dN/dS ratio will under-report the extent of adaptive
change for any model in which episodic environmental change causes a

transformation from one optimal state to a new optimum.
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What an excess of non-synonymous to synonymous polymorphism is truly indicative
of is selection for variation in the polypeptide sequence, not change from one
conserved state to another. That makes the dN/dS ratio a particularly useful tool for
studying the interaction between antigen genes and the immune system.
Immunological memory against particular antigens exerts a strong selective pressure
for antigenic novelty in the parasite population. This is known as diversifying
selection. The antigenic properties of an outer membrane protein such as PorB may be
determined by a small number of amino acids that might or might not be contiguous
in the codon sequence. The dN/dS ratio can in principle be harnessed to estimate the
magnitude of the selection pressure exerted by the immune system on different genes,
investigate the evolutionary trade-off between protein functionality and immune
evasion in the parasite, and locate the genetic determinants of antigenicity at a locus.

The latter might be informative for vaccine devel opment.

4.1.2 Inferringimmune selection using dN/dS

Nielsen and Yang (1998) proposed a maximum likelihood phylogenetic approach to
estimating the dN/dS ratio that employs a codon-based mutation model (Equation 1),
and treats the dN/dS ratio as an unknown parameter . This method has subsequently
been expanded (Yang et al. 2000; Yang and Swanson 2002; Swanson et al. 2003),
adapted into a Bayesian setting (Huelsenbeck and Dyer 2004), and approximated for
the purposes of computational efficiency (Massingham and Goldman 2005).
Simulation studies have shown that phylogenetic likelihood-based methods can be

substantially more powerful than aternative non-likelihood-based approaches
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(Anisimova et al. 2001; Anisimova et al. 2002; Wong et al. 2004; Kosakovsky Pond

and Frost 2005).

Estimating the selection parameter o using these methods has become widespread
(e.g. Bishop et al. 2000; Ford 2001; Mondragon-Palomino et al. 2002; Filip and
Mundy 2004) and has been applied to many organisms. Analysis of pathogens such as
viruses (Twiddy et al. 2002; Moury 2004; de Oliveira et al. 2004) and bacteria (Peek
et al. 2001; Urwin et al. 2002) is particularly informative, because they typicaly have
high mutation rates and are consequently genetically diverse, which lends greater
statistical power to estimation. As discussed, the diversifying selection imposed by
the host immune system may be the most appropriate model for which inference
based on the dN/dS ratio can be applied. The ability to observe these populations
evolving in rea-time makes them especialy interesting for the study of evolution
(Drummond et al. 2003a), and suggests that we may be able to make useful

epidemiologica inference from molecular sequence data.

4121 CODEML

The method of Nielsen and Yang (1998) is the most popular method for estimating
the dN/dS ratio for nucleotide sequence data, and has been widely applied to samples
within parasite populations. Based on the mutation model specified by Equation 1, in
its original incarnation a random effects model is used for variation in w between
sites. To make inference feasible, only three classes of sites, occurring in proportions
Po, p1 and p, are alowed. These have dN/dS ratios wo, w1 and w-, respectively, subject

to the constraint that w, < w, < w, . The method has three stages.
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1. A tree topology is supplied or estimated using maximum likelihood (ML)
from the data using a simple nucleotide mutation model.
2. Conditional on the topology, the branch lengths, x, po, p1 and o are estimated
by maximum likelihood.
3. An empirical Bayes (Robbins 1956) approach is used to obtain the posterior
probability that a given siteis amember of a particular class.
The posterior probability that site h belongs to class k, so that the selection parameter

a site h, w, say, equals w is taken to be

Pr(Wh:wklxh): pkf(xhlwh:wk) )

2 )

zpkf(xhlwhch)

1=0
(Nielsen and Yang 1998) where X, is the codon alignment a site h and

f(X, |w, =a,) isthelikelihood function. Equation 2 hides some of the conditioning

however. The likelihood function in Equation 2 is not marginal to, but conditional
upon the ML tree topology, branch lengths and x, which are estimated using the
alignment across al sites, X. The posterior probability of belonging to classk is aso

conditional upon the ML estimates of pp and ps.

The method of Nielsen and Yang (1998) is implemented in the program CODEML,
part of the PAML package (Yang 1997). CODEML includes a large number of
aternative specifications for the variation in @ over the sequence, including an
arbitrary number of classes, gamma, beta and truncated normal distributions for the
variation in w across sites (the distributions have to be discretised for computational
feasibility) and combinations thereof (Yang et al. 2000). Nielsen and Y ang (1998) use
a likelihood ratio test to compare nested models of variation in w. For example, a

model with three classes where wo = 0, w1 = 1 and w, > 1 can be compared to a model
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with only two classes where wo =0 and w1 = 1. This constitutes a test for positive
selection. Nielsen and Yang (1998) assume that for nested models, the difference in
double the log likelihood (the deviance) follows a y? distribution with degrees of
freedom equal to the difference in number of parameters. In practice this asymptotic

result might not hold (Anisimovaet al. 2001).

4.1.2.2 MrBayes

Huelsenbeck and Dyer (2004) implement the model of Nielsen and Yang (1998) in a
fully Bayesian setting, available in MrBayes 3 (Ronquist and Huelsenbeck 2003).
MrBayes uses MCMC to obtain a posterior distribution for all parameters of the
model: codon frequencies, tree topology and branch lengths, x, p and ®. Not

surprisingly, it is considerably more computationally intensive than CODEML.

Huelsenbeck and Dyer (2004) fit a uniform prior on all unrooted tree topologies, and
an exponential prior on branch lengths. Symmetric Dirichlet priors are applied to the
frequencies p of the o classes, and the codon frequencies. For the
transition:transversion ratio x, a distribution describing the ratio of two i.i.d.

(independently and identically distributed) exponentia random variablesis used:

Under their prior, the selection parameters wo, w1 and w; are treated as ordered draws

(w, <w, <w,) from a distribution describing the ratio of two i.i.d. exponential

random variables:

36

f(wo’wliwz): (1+a)0+w1+a)2)4 :
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Because MrBayes is fully Bayesian, uncertainty in the phylogeny, mutation
parameters and o class frequencies is taken into account in the posterior probability

that site h belongsto class k
Pr(Wh =Wy |X):_[f(wh =a)k,@|X)d@,

where © represents «}_;,p, & , the phylogenetic tree topology and branch lengths.

4123 SLR

Massingham and Goldman (2005) introduced the sitewise likelihood ratio (SLR)
method, which is an approximation to the ML method of Nielsen and Yang (1998).
SLR is principally concerned with identifying the mode of selection at each site (i.e.

dN/dS < 1 or dN/dS > 1).

The problem with estimating a separate dN/dS ratio for every codon in a sequence is
that there are too many parameters. Nielsen and Yang (1998) overcame this problem
by using a random effects model for the variation in @ which reduces the number of
parameters to only a few. In CODEML, maximum likelihood estimates of the
parameters are obtained using a high dimensiona optimization procedure which is
computationally intensive. In contrast, Massingham and Goldman (2005) use an
approximation, described below, that allows a different » to be estimated for each
site. The approximation allows there to be a single multidimensional optimisation for
the whole sequence (with fewer parameters than in CODEML) and then a one
dimensional optimisation for each site.

The method works as follows
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1. Assuming a common selection parameter for the whole sequence wo, the
maximum likelihood tree, including branch lengths and the parameters x and
wo arejointly estimated.

2. For each sitei anindividual selection parameter w; is estimated, assuming that
the selection parameter for al other sitesis wo.

3. For each site i alikelihood ratio test is performed for the null hypothesis that

w; =1 by assuming that the difference the deviance between w =d& and

wi = 1isy? distributed with one degree of freedom.
The method is approximate because for each site w; is estimated conditiona upon all
the other parameters, including wo. As a result estimating w; is a one dimensional
problem for each site. The 4 distribution used in the likelihood ratio test is an
asymptotic result that may not hold, so a parametric bootstrap procedure (Goldman

1993) can aso be used to generate the null distribution of the difference in deviances.

4.1.2.4 Problemswith current methods

CODEML, MrBayes and SLR al rely on reconstructions of the phylogenetic tree for
the sample of genes. These methods have been applied frequently to within-
population samples of micro-organisms (Twiddy et al. 2002; Moury 2004; de Oliveira
et al. 2004; Peek et al. 2001; Urwin et al. 2002). However, the use of phylogenetic
techniques is questionable in organisms that are highly recombining, because
recombination leads to not one, but multiple evolutionary trees along the sequence. If
the recombination rate is of the same order as the mutation rate, as has been found in
some organisms (McVean et al. 2002; Stumpf and McVean 2003), then there might
be a new evolutionary tree for every polymorphic site along the sequence. In such a
scenario, which is plausible for many highly-recombining micro-organisms (Awadalla
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2003) and eukaryotic genes containing recombination hotspots (McVean et al. 2004,
Winckler et al. 2005), there is little hope to infer any particular evolutionary tree
along the sequence. When a single evolutionary tree is estimated for a sample of gene
sequences that have undergone recombination, the resulting tree is likely to have
longer terminal branches and total branch length, yet a smaller time to the most recent
common ancestor, in away that superficially resembles the star-shaped topology of an
exponentially growing population (Schierup and Hein 2000). The effect on detecting
diversifying selection is to produce a high rate of false positives (Anismova et al.

2003), as high as 90% (Shriner et al. 2003).

4.2 Modedling selection with recombination

4.2.1 Population geneticsinference

When changes in the evolutionary tree are separated by only a few polymorphic sites,
there is little hope to infer the tree at any particular site along the sequence. The
population genetics approach is to treat the evolutionary trees along the sequence, or
genealogy, as missing data. Because the likelihood of a set of molecular sequences
needs to be evaluated with reference to a particular genealogy (Felsenstein 1981), it is
calculated by averaging over the genealogies, weighted by the probability of that

genealogy under the missing data model.

P(H|©)=[P(H|©,G)P(G)dG, 3)
where P(H |©) is the likelihood of the data H given the parameters @, P(G) is the
missing data model for the genealogy and P(H | ©,G) is obtained using the pruning

algorithm (Felsenstein 1981). There are various ways to model P(G). In the case of
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no recombination Huelsenbeck and Dyer (2004) used a model in which all unrooted
tree topologies were uniformly likely, and branch lengths had an exponential
distribution. When the sequences are from a single population a natural choice would
be the coalescent (Kingman 1982a, 1982b; Hudson 1983; Griffiths and Marjoram
1997) which models a neutrally evolving, randomly mating population of constant

size, with or without recombination.

However, P(H |©,G) involves summation over the unknown states of internal nodes
in the marginal genealogies (the evolutionary tree at a particular site), so the
integration in Equation 3 cannot be solved analytically for any genealogical model,
including the coalescent. As a result Equation 3 has to be evaluated numerically,

whichisnot atrivia problem. Naively,

P(H10)=—> P(H|0,G"). @

1

M=
for large M, where G is simulated from P(G). Unfortunately, for all but the simplest
problems this method is useless because for most trees drawn from P(G), the
conditional likelihood P(H |G),G) is negligibly small. Only once in a million draws

would the conditional likelihood contribute significantly to the sum (Stephens 2003).

Importance sampling and Markov Chain Monte Carlo are methods that attempt to
calculate Equation 4 more efficiently (see Stephens 2003). Both methods have been
applied to a variety of contexts in population genetics (e.g. Kuhner et al. 1995, 1998,
2000; Griffiths and Marjoram 1996; Beerli and Felsenstein 1999, 2001; Bahlo and
Griffiths 2000; Stephens and Donnelly 2000; Fearnhead and Donnelly 2001;

Drummond et al. 2002; Wilson et al. 2003; Coop and Griffiths 2004; De lorio et al.
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2005). The methodology is more tractable in the absence of recombination because
the state space of the possible genealogies is much smaller. In the presence of
recombination, only the simplest models with two parameters (the mutation rate and
recombination rate) have been implemented (Fearnhead and Donnelly 2001; Kuhner
et al. 2000). Even for a small number of sequences these methods are extremely
computationally burdensome. In the context of the NY98 mutation model with
variation in the selection parameter and recombination rate amongst sites, such an

approach is not feasible.

4.2.2 An approximation to the coal escent

Instead | turn to an approximation to the coalescent likelihood in the presence of
recombination (Li and Stephens 2003) called the PAC likelihood (“product of
approximate conditionals’). Their approach relies on rewriting the likelihood as

P(H|®©)=P(H,|©)P(H, |H,,0)---P(H, |H,,H,,....H,,0) (4)
where H =(H,,H,,...,H,) is the sample of n gene sequences (haplotypes). Li and
Stephens approximate the (k +1)th conditional likelihood

P(H.. |H,, Hyoo o H @)= A(H, , |Hy Hy,. . HL,O).

The approximate conditional likelihood, 7, that they use is a hidden Markov model
that is designed to incorporate some key properties of the proper likelihood, notably
that (i) the (k +1)th haplotype is likely to resemble the first k haplotypes but (ii)
recombination means that it may be a mosaic of those haplotypes and (iii) mutation
means that it may be an imperfect copy. In terms of averaging over possible

evolutionary trees, one can think of the hidden Markov model doing so implicitly, but

in an approximate way that is highly computationally efficient.
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TT'I'GATACTGTTGCCGAAGGI#‘TGGGCGAAATTCGCGATTTATTGCGCCGI“I'A'I'CATCA'I‘ I

TTTGATACCGTTGCCGAAGGTTTGGETCAAATTCGCGATTTATTGCGCCGTITACCACCGEC

'I'T'I'GATACCGTTGCCGAAGG'I'I'TGGGTAAAATTCGCGATTTATTGCGCCGI“I'ACCACCGC

TTTGATACCGTTGCCGAAGGTTTGGG CCAAATTCGIGATTTATTGCGCCGTTATCATCA

TTTGATACTGTTGCCGAAGETTTGGGCCAAATTCGCGATTTATTGCGCCGTTATCATCAT

TTTGATACCGTTGCCCAAGEGTTTGEGCGTCAAATTCGCCGATTTATTGCGCCETTACCACCGC

I TTTGATACCGTTGCCGAAGETTTGGGTAAAATTCGCGATTTATTGCGCCGTITACCACCGC I

Figure 4 Approximate likelihood of the orange haplotype conditiona on the red, green and blue
haplotypes. In Li and Stephens (2003) model, the orange haplotype resembles the others, but
recombination means it may be a mosaic and mutation means that it may be an imperfect copy. In the top
scenario, the orange haplotype is a mosaic of the red and blue haplotypes, necessitating a C—T mutation.
In the bottom scenario, the orange haplotype is a copy of the blue haplotype, necessitating five mutations:

T—C, and four C—Ts.

As aresult of the approximate nature of the PAC likelihood, the ordering of the n
haplotypes can influence the value of the likelihood (were it not for the
approximation, the haplotypes would be exchangeable). Therefore, the likelihood is
assessed by averaging over multiple orderings of the haplotypes. In the analyses |
present throughout this chapter and Chapter 5, | use 10 orderings unless otherwise

stated.

4.2.2.1 Sampling formula with recombination

Li and Stephens (2003) use a hidden Markov model (HMM) to approximate the
likelihood of the (k+1)th haplotype conditional on the first k. Theirs is an
approximation to the sampling formula in the sense of Ewens (1972), with the

192



additional complication of recombination. Li and Stephens think of the (k +1)th
haplotype as a copy of the first k haplotypes. Figure 4 illustrates the idea. At every
site, the orange haplotype is a copy of one of the four other haplotypes. This
haplotype can be thought of as being closest to the orange haplotype in the
evolutionary tree. Parsing the sequence 5' to 3/, the orange haplotype is a copy of the
blue haplotype, so at the first polymorphic site, depending on the mutation rate, it is
most likely to share the same nucleotide C. Continuing along the sequence, the orange
hapl otype can switch between the other four with a given probability. However, if the
orange haplotype is a copy of the blue haplotype at site i, then it is most likely to
continue copying the blue haplotype a site (i+1). This models the way that
recombination creates mosaics of contiguous sequences. Between the first and second
polymorphic site, the orange haplotype might switch from copying the blue to
copying the red haplotype (Figure 4, top). In that case only one mutation need be
invoked for the rest of the sequence. However, with some probability the orange
continues to copy the blue haplotype (Figure 4, bottom), in which case five more

mutation events need to be invoked.

4.2.2.2 Mutation model

In the lexicon of HMMs, the latent variable records which of the first k haplotypes the
(k+1)th is a copy of a a given site Conditiona on the latent variable x
(x=01,...,k), the emission probability models the mutation process, because it
specifies the probability of observing state a=H,,,; in haplotype (k +1) given state
b=H

i in haplotype x, at a particular site i. Under a coalescent model (Kingman

1981, Hudson 1983), the time (in units of PN, generations) to the common ancestor of
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haplotypes x and k +1 isknown (R. C. Griffiths, unpublished), and to the order of the
approximation is exponentially distributed with rate k. Consider a simple mutation
model with two states 0 and 1, and mutation rate 6/2 per PN generations. The model

is defined by the instantaneous rate matrix

5
012 -612 ®)

B ‘— e/2 @812 ‘
Thematrix P") gives the probability p{!) of asite being in statej time t after it wasin
statei.
Pl = e (6)
(see Grimmett and Stirzaker 2001), which can be solved anaytically for this model to

give

1+1exp{—5t} fori = j
p =12 2 .
R N o{-a} fori# |
2 2%

The probability of observing an (unordered) pair of states (a, b) given the time t to
their common ancestor for areversible mutation rate matrix (such as Q) is
P(a.blt)= 0,7, p%’, @)

where 77, = 77, =1/ 2 are the equilibrium frequencies of states0 and 1, and

1 fora=b
O, = )
2 fora#zb

Lilep-a} fora=b

P(ab|t)={4 4 .
%—%exp{—ét} forazb
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To obtain the probability of observing a pair of states unconditional on the time to

their common ancestor involves the integration
P(a,b)= [P(ab|t)P(t)dt, (8)
0

where P(t)=kexp{-kt} from before. Therefore the emission probability is defined

by

2k +6
Ak+6

o forazb
2k +6

fora=b

—

P(a,b) =

S—|

which is normalised because P(0,0)+ P(01)+P(11)=1. Li and Stephens (2003)
denote the emission probability

Vi (X) = P(H kevi s Hi ) 9)

4.2.2.3 Recombination model

The transmission probability models recombination, because it specifies the
probability of a switch from copying one haplotype to copying another between
adjacent sites i and (i +1). Li and Stephens (2003) model the length of sequence
before a switch as exponentially distributed with rate p/k. This is based on the

informal ideathat E(t)=1/k, so the average rate of recombination between a pair of

sequences is roughly (0/2)x(2/k). Under this crude approximation, the transmission

probability is defined by

P(X,

XX = X):{exp{-,oidi Ik} +(1-exp{- pd 1K} /K if X =x (10

(1-exp{- pd, /K})/ k otherwise
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where X; is the copied haplotype at site i, Xi.1 is the copied haplotype at site (i + 1),
and d; is the distance (in bp) between sitesi and (i + 1). In this model there can be a

different recombination rate p; between every pair of adjacent sites.

4.2.2.4 Computing thelikelihood

To calculate the approximate conditional likelihood requires a summation over all
possible combinations of the latent variable at every site; that is to say, all possible
mosaics that might constitute the (k +1)th haplotype. The advantage of the HMM is
that this computation is fast using the forward algorithm (e.g. Rabiner 1989). Suppose

that a,(x) isthejoint likelihood of thefirst i sitesand X, = x. Then the approximate

conditional likelihood is

ﬁ-(Hk+1 | H1’H2’---’Hk’e)_

|
™M
IS
=

when there are L sites. From the forward algorithm,
[
ai+l(x) = yi+l(x)zai (X')P(Xiﬂ =x|X; = X')
'=1

= ] P+ 0= )3 3 ()

: (11)

where p, = exp{- p,d, /k}. Because the second term in Equation 11 does not depend

on x, it only needs to be computed once for each site. As a result, the computational
complexity of the approximate conditional likelihood 7 islinear in L and linear in the
total sample size n. The complexity of the full PAC likelihood is, therefore, linear in L

and quadratic in n (Li and Stephens 2003).
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4.2.3 NY98in the coalescent approximation

Incorporating the NY 98 mutation model in to the coalescent approximation of Li and
Stephens (2003) is straightforward. The instantaneous mutation rate matrix Q in
Equation 5 is replaced by that defined by Equation 1. However, the exponentiation of
the NY98 rate matrix in Equation 6 cannot be solved anayticaly. Instead, a
numerical technique known as diagonalisation is used. Equation 6 can be re-written
using the matrix factorisation

Pl = vePy (12)
(Grimmett and Stirzaker 2001) where V is a matrix whose columns are the right
eigenvectors of Q, V! is its inverse and D is a diagonal matrix whose diagonal

elements are the eigenvalues of Q. Exponentiation of a diagona matrix is trivial,

because
expftD}, = {e’(pgd”t} :co’: : ) j . (13)
So, breaking down Equation 12 into parts for simplification,
PO =My
where
M =Ve®.
Now, using Equation 13 and the laws of matrix multiplication,
my =v; expid it}
S0
Py = v expld v, (14)
&
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where C is the state space of Q, which consists of the 61 non-stop codons for NY 98.

Using Equation 7, the probability of observing a pair of states a=H,,,;, and b=H ;
when the (k +1)th haplotype is copying from the xth haplotype s,

Plablt)= 0,7, > vvi exp{2d,.t}.

cic
Following Equation 8, one can obtain an expression for the HMM emission
probability under any reversible mutation matrix Q

_ ()__K
P(a,b) 5ab”a§Vachb —2d. (15)

Equation 15 is useful because it means that the PAC likelihood can be adapted to any
reversible mutation model, of which NY98 is just an example (e.g. Rodriguez et al.
1990; Goldman and Yang 1994; Sainudiin et al. 2005). For a particular combination
of the mutation rate parameters 4, k and w, the rate matrix Q must be diagonalised,
which is to say its eigenvalues and right eigenvectors must be found (Equation 12).
This can be achieved for any general real matrix Q using a numerical agorithm,
available in libraries such as Numerica Recipes (Press et al. 2002), LAPACK
(Anderson et al. 1999) or NAG. See Wilkinson and Reinsch (1971) for details of the
algorithm. One problem with the algorithm for diagonalising a general real matrix is
that the eigenvalues and eigenvectors are not guaranteed to be real numbers. In fact
the eigenvalues and eigenvectors of a reversible rate matrix are real. | am grateful to
Ziheng Yang for showing how further factorisation of Equation 12 leads to
diagonalisation of a symmetric real matrix, for which the algorithms are guaranteed to
produce rea egenvalues and eigenvectors. The algorithm for diagonalising a

symmetric real matrix is also quicker and safer than the algorithm for diagonalising a
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general real matrix. The code | used for the implementation of this algorithm was

kindly provided by Ziheng Y ang.

A reversible, irreducible mutation rate matrix Q, which is given by Equation 1 for
NY 98, can be re-written
Q=SI

where Sis asymmetric matrix (s; =q; /77;,i # |, cf. Equation 1) and IT is a diagonal
matrix whose diagona elements are the stationary frequencies z; of the rate matrix.
The eigenvalues and eigenvectors of Q can be obtained by constructing a symmetric
matrix

A=m"2Qm"?,
because the eigenvalues of A and Q are the same (contained in the diagonal matrix
D), and the matrix of right eigenvectorsV for matrix Q isrelated to the matrix of right
eigenvectors R for matrix A by the formulae

V=I"°R
V—l - R_ll_[l/z.

Matrices D and R are obtained by diagonalising A using the algorithm for a
symmetric real matrix. Because R is orthogonal, R™ =R", so no matrix inversion is
required for obtaining V™*. By matrix multiplication

— ~1/2
Vac =T, a rac

. (16)
Vgl) = o7l
Therefore, Equation 15 can be re-written
P(a’ b) = 5abn_;/2ﬂ;3u2 z lacloe T2 (17)
dic k - 2d

cc

Thisisthe actual formula used in the implementation of the model.
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424 Aninde model for NY 98

Alignments of nucleotide sequences from antigen loci are punctuated by gaps in the
alignment caused by insertion or deletion mutations (indels). A sequence alignment is
a statement of the homology of particular nucleotides in one sequence to those in the
other sequences. Indels cause gaps in the nucleotide sequence aignment in multiples
of three when the gene is functional, because otherwise a frameshift will ensue, and
the remaining sequence will be nonsense. Indels are an important feature of the
evolution of antigen loci, but even simple treatments of indels result in complex
models that do not share the nice properties of the reversible nucleotide and codon
models in common usage (e.g. Thorne et al. 1991, 1992). Here | make a very simple
extension of NY98 in order to incorporate an extra indel state. The motivation for
using this model is not to provide arealistic model of insertion/deletion, but to capture
the information regarding the underlying tree structure and mode of selection at sites
segregating for indels in the simplest possible way. The model is only applied to

columnsin the alignment that are segregating for an indel.

For columns segregating for an indel, codons are assumed to mutate to the indel state
at rate 71, ¢ and back at rate (1- 77, )pw . Here mnga is the equilibrium frequency
of indels (in sites segregating for indels), ¢ isthe rate of insertion/deletion, and w is

the selection parameter for that site. The model can be thought of in two parts: the
NY 98 model is nested within atwo state codon vs. indel model (0 = codon, 1 = indel)

specified by
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= 7T PO 7T g PV

0" (1_ Tlingel )¢w - (1_ Tlingel )¢

(18)

Exponentiating Equation 18 gives the transition probability matrix between codon and

indel states. So
1- 71, (1- exp{- wpt}) for two (unspecified) codons
) — TT g (1 7dee,)exp{ w¢t} for twoindels (19)
PTY L (- expl- apt)) if iisacodonand janindel
(1- 77, )1 - exp{- apt}) if iisanindel and j acodon

Denote the full transition probability matrix for the NY98 model with indels PY.

From Equation 19, part of this matrix is apparent

TToge + (1= 77,4 )exp{— cipt} for twoindels
pl = TT, 4 (1— exp{— cpt}) if i isacodon and janindel .
77, (1 77, )1 — exp{- wpt}) if iisanindel and j acodon

When i and j are both codons, pi(jt) can be found by conditioning on whether there are

intermediate indels. Denote N :{Vigt)} for the transition probability matrix of the

NY98 modd without indels. Conditiona on intermediate indels, the transition

probability from codon i to j in time t is simply z;. Conditional on no intermediate

indels, the transition probability from codon i to j in time t is Vigt). Since the
probability of no intermediate indelsis exp{- 77, #c} , for apair of codons
le eXp{ mdel ¢C()}+ ﬂ [1 |nde| (1 eXp{ Wt}) p{ mdel ¢w}]

Using Equations 8, 14 and 16 the emission probabilities for the PAC likelihood are

obtained. For two identical codons

KT k 1 kr.I
= 2 1— 7 indel  _ ac be
P(a,a) = 72 (L~ 77, ){( Tnga )+ k+2wp k+27 (,_¢ M, e k+2m, . wp —2d

(20a)

where C isthe state space of the NY 98 model. For two non-identical codons
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P(a.)= 27,1, (L~ T ) (1 7 )+ it K Ly e

+
K+20p K+2mg0p [ K+ 2 gg0p —2d,,

(20b)
For two indels
P(a, a) — n}idel + ﬂindel k(l_ ﬂindel ) . (200)
K + 20
For acodonaand anindd b
P(a,b)=2m,m -1, ) 1- k. (20d)
’ a’‘b indel k + 26()/]

4.2.5 Variation in w and p along a gene

The primary aim of the new method is to obtain posterior distributions for @ and p,
allowing both to vary aong the length of the sequence. The information regarding
either w or p a a given position along the sequence is limited by the number of
mutations in the underlying evolutionary history. This is a potentialy serious
limitation, particularly for sequences with low diversity. In an attempt to exploit to the
full the available information, | use a independent prior distributions on @ and p in
which adjacent sites may share either parameter in common. | will describe the model
of variation in w for the purposes of information. The model of variation for p is of

the same form.

For a sequence of length L codons, the prior distribution imposes a ‘block-like

structure on the variation in @ with two fixed and B, (0<B,<L-1) vaiable

transition points,
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where (s, =0)<s <5, < <55, <[s5...=L).
Block j is delimited by transition points (sj,sj+1) and has a common selection
parameter w, . | model the number of variable transition points in the region as a

binomial distribution with parameters (L -1, p,,). Given the number of transition

points, the selection parameter for each block is independently and identically

distributed. For an exponential prior on w; with rate parameter 4, the prior

distribution on the transition points and sel ection parameters can be written
P(B,S(Bw),w(sw)) = plo(1-p,) AR exp{—A(a)o +oy ety )} (21)

In this mode!, the expected length of ablock is L/([L -1]p, +1)=1/p,,. For p, =0

there is a single block, producing a constant model for @ along the sequence, and for

p, =1 every site has its own independent w.

This prior structure is based on the multiple change-point model of Green (1995)
which was adopted by McVean et al. (2004) to estimate variable recombination rates
along a gene sequence, although the binomial model that | have used here is designed
specifically so that transition points must fall between codons at a finite (L —1)
number of positions. | implement a block-like prior on p of the same form as for w,
but the block structure for p is independent of the block structure for w, and the
number of variable transition points is binomially distributed with parameters

(L-2,p,). It is assumed that recombination only occurs between codons and not

within. To perform inference jointly on variation in w and p aong the sequence | will

use reversible-jump MCMC.
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Table 1 Notation used for Constants

n Sample size

L Number of codons
P Ploidy
Ne Effective population size

Table 2 Parameters of the M odel

sEB"),j =0...B, +1

p;,1=0...B,

Rate of synonymous transversion per PN generations
Transition:transversion ratio

Number of changesin the dN/dS ratio along the sequence

Positions at which the dN/dS ratio changes along the sequence

dN/dS ratio between sites SE“’) and sﬁ‘;’i

Number of changes in the recombination rate along the sequence
Positions at which the recombination rate changes along the sequence

Recombination rate between sites sg") and sﬁf}

Rate of insertion/deletion per PN generations

4.3 Bayesian inference

To summarise, Tables 1 and 2 list the constants and parameters of the model. The

parameters together in Table 2 are denoted ®, and the aim of Bayesian inferenceisto

obtain a posterior distribution of ® given the data H. To do so | will use Markov

Chain Monte Carlo (MCMC; see for example O’'Hagan and Forster [2004] for
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Table3MCMC Moves

Relative proposal
Type Move
probability

A Change u oo

A Changex oo

A Change ¢ oo

A Change w within a block oo

A Change p within ablock oo

B Extend an o block 5" or 3’ (YY)

B Extend an p block 5’ or 3’ oo
C/D  Split or merge w blocks T YY YY)
C/D  Split or mergep blocks T YY YY)

details). In brief, the Markov chain isinitiated using values taken at random from the
priors. Each iteration of the chain one or more parameters are updated according to a
proposal distribution, and the proposal is accepted with the acceptance probabilities
specified in the next section. There are nine moves that can be proposed, each of
which is visited with the relative probability specified in Table 3. Thisis known as a
random sweep. Moves of type A and B (Table 3) are Metropolis-Hastings (Metropolis
et al. 1953; Hastings 1970) moves that change a single parameter at atime. Moves of
type C and D are complementary reversible-jump moves (Green 1995). For the
purpose of illustration, 1 will describe one each of move types A-D, and assume that
the prior on the w;’s specifies i.i.d. exponential distributions with rate A. The moves

below describe in full how variation in w along the sequenceis explored by MCMC.
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4.3.1 TypeA. Change o within a block

Metropolis-Hastings move

A block is chosen uniformly at random. A new value o' is proposed so that
w = wexp(lU) where U ~ Uniform(-1,1). Thus we™ <& < we. The acceptance

probability is given by the Metropolis-Hastings ratio

ol - 0)= min{], PH|@)PE)K(O - e)}’

P(H|0©) P(@) K(® - @)

where K(© - @) isthe proposal kernel density. To find K, note that

Pr(U <u):%(1+u), ~1l<u<l.

So
Pr(e < x) = Pr(we’ <)
= Pr(U < Inlj
w
:1[1+In1j.
w
Therefore
P(e = x) =2 Pr(w < x)
0Xx
-1
2X
This gives an acceptance probability of
N[ PH|O) , W
5 = ———expi—- A - w)—". 22
a,(e - o) mln{l o(H [0} exp{- Ao - w)} a)} (22)

206



4.3.2 TypeB. Extend an o block 5" or 3’

Metropolis-Hastings move

The block to extend is chosen uniformly at random, and for each block the direction is
chosen with equal probability. If the 5’-most or 3'-most block is chosen to be extended
5 or 3 respectively, the move is rejected. The number of sites to extend the block,
gl [L oo) is chosen from a geometric distribution with some parameter. If extending
the block g sites in the chosen direction would cause it to merge with the adjacent

block, the move is rejected.

The proposal distribution is symmetric, so the Hastings ratio is one. The ratio of priors
is also one because the prior on the positions of the transition points is uniform.

Therefore

ay(© -~ ©)=mi n{l%}. (23)

4.3.3 TypesC and D. Split and Merge an @ block

Reversible Jump moves

The acceptance probability for areversible jump move (Green 1995) is

oo - 0)=mnfu A1) L)oo, )

P(H|©) P(©) i,(©) g.(U)|aeU)|
Here j,(O©) is the probability of proposing move m when at state ©, and g,,(U) is

the joint probability density of the random vector U which is generated to facilitate
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the transformation from (©,U) to (©,U’'). The last term in the acceptance

probability is the determinant of the Jacobian of the diffeomorphism (the

transformation which must be differentiable in both directions).

4.3.3.1 Ratioof priors
In move C a block that currently has length (sj+1 —sj) is split at position s*, and its
current selection parameter w; is transformed, with the aid of a random variable U,

into two new parameters w, and w),,. Theratio of priorsis

el al-ar )

In move D two adjacent blocks that currently have lengths (s* —sj) and (s].+l - s*)
are merged, and their selection parameters w, and w,,, are transformed into asingle

parameter ;. Sotheratio of priorsis

a-p,)
]-ijeXp{_ (w W w]+l)}

4.3.3.2 Ratio of proposal probabilities
Move C splits an existing block. When there are (B, +1) blocks there are

(L-B, —1) possible positions at which a block could be broken. The position of the

split, s*, is chosen uniformly at random from these. Move type C; splits the block that

spans position i; only (L - B, —1) out of the total possible L —1 type C moves are

208



available at any one time. So j. (©)=c,/(L-B, —1), where cg is the total rate at

which type C moves are proposed when there are (B,, +1) blocks.

Move D merges two adjacent blocks. Assuming that the block merges with its 3’
neighbour, there are B,, possible mergers. The merger is chosen uniformly at random

from these B, possibilities. So |, (©)=d;/B,, , where ds is the total rate at which

type D moves are proposed when there are (B,, +1) blocks.

Following Green (1995), when there are B, transition points, moves C and D are

proposed with relative probabilities c; and dg, where

¢, _ minfL,P(B, +1)/P(B, )}
d, min{L,P(B,-1)/P(B, )}

Under the prior, the number of transition points B, is distributed binomially. This
yields

Pr(B,+1) _(L-B,-1) bp, nd Pr(B,) B, (1-p,)
Pr(B,)  (B,+1) (1-p,) |

4.3.3.3 Ratio of density functions
Intransforming w; to w; and «,,, itis necessary to introduce arandom deviate U to

match the dimensionality on both sides. So the transformation (w;,U) - (&, &,

involves the generation of arandom deviate U in move C, but not in the inverse move
D. This smplifies g, (U')/g.(U) to /g.(U). Since U is chosen uniformly on (0,1),

thisratio equals one.
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4.3.3.4 Jacobian

In Move C the values of the selection parameters for the two resulting blocks, «'j and
w';+1 are chosen from the current value of w; so that the weighted geometric mean is
preserved. The weighting takes into account the relative sizes of the two resulting

blocks, which are (s* =S, ) and (sj+1 - s*) respectively. Thus

(5-s7) glsiams) — , (si-s)
w;" Wiyt =W '

To introduce a random el ement,

where U ~ Uniform(0,1). The determinant of the Jacobianis,

ow, 0w,
j= (M)'j 6a,)j ’

w, 0w,

ou duU

Toobtain J, it is necessary to express w; and w),; intermsof w; and U, giving

o oz [20)
U

where a = (s* =S, )/(sj+1 - S; ) The determinant of the Jacobian (which is defined to

be always positive) comes out as

J — (CU; +a)(j+l)2 )

w;
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4.3.3.5 Acceptance probabilities

For move C,

' Aol d) (L-B, -1) () +a,, )

a’c(@ - @'): min<1, P(H |O) pre o] Bw+1( w )(C()J +C()]+1) .
P(H|®) 1-p,)e"“  cq (B, +1) ,

(24)

For move D,

!

P(H[9) 1-p, )" cy B, @,
-MNwj+w,.1) 2 (" (25)
P(H |O) pre J j+l dBw (L_Bw) (wj +wj+l)

a,(© - 0)= min{],

Table 4 Structure of the omegaMap program

File Function #Lines
main.h Header file for main.cpp 6
omegaMap.h Header file for omegaMap.cpp 361
main.cpp Program control 30
omegaM ap.cpp Read in command line and configuration file 1164

options. Allocate memory. Initialize the MCMC
chain.

likelihood.cpp Calculate the likelihood. Forward and backward 726
algorithm. Build the mutation rate matrix.

mcmc.cpp Controls the MCMC scheme. Proposes moves. 1514
Cal culates acceptance probabilities.

io.cpp Outputs MCMC chain in text format and encoded 504
format. Functions for reading in MCMC chain

from encoded format.
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Table5 Utilities used by omegaMap

File Function # Lines
argumentwizard.h  Utility for reading in command line options. 215
controlwizard.h Utility for reading in configuration files. 659
dnah Functions for reading in FASTA files and storing 486
DNA sequences.
lotri_matrix.h Lower triangular matrix class. 144
matrix.h Matrix class. 226
myerror.h Error and warning functions. 33
myutils.h Links these various utility files. 35
random.h Random number generation. 520
utils.h Various utilities. 29
vector.h Vector class. 133

Table 6 PAML package, linked to by omegaMap

File Function # Lines
paml.h Header file for tools.c 335
tools.c PAML functions 4369

PAML was written by Ziheng Y ang and is available from

http://abacus.gene.ucl.ac.uk/software/paml.html
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4.3.4 Implementation

| implemented the likelihood calculation and inference scheme in C++. The program,
called omegaMap, was built up progressively, from testing the likelihood function on
simple examples that could be verified using a calculator, to a Metropolis-Hastings
MCMC scheme without variation in @ and p, to the full reversible-jump MCMC
scheme. The code was developed using Microsoft Visual C++ and then switched to
Linux gcc for testing on datasets of redlistic size. The MCMC scheme was debugged
principaly by using a flat likelihood, in which case one expects to recover the prior
from the posterior. This proved important when, having moved from a dual-node 64-
bit AMD machine (mcv1l@stats.ox.ac.uk) | recompiled the program on a multi-node
64-bit AMD machine (genecluster@stats.ox.ac.uk), the posterior began to produce a
systematic bias in the recombination rate estimates, so that rates declined 5'-3', even
when the same sequence was reversed. Using a flat likelihood revealed that there was
a numerical inconsistency, probably caused by a difference in compilers on the two
machines. The problem was solved in a makeshift fashion by running the executable
compiled on mcvl on genecluster. This was a compromise because the executable
compiled on mecvl ran somewhat slower on genecluster than the executable compiled
on genecluster. Thisis a cause for concern because the expectation is that C++ code is
portable between machines and compilers. As a result when the code is distributed |
will stress the need to test the program by compiling it first with flat likelihoods
(which can be done using the flag —-D _TESTPRI OR) and ensuring the prior is

recovered from the posterior.
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Table 7 Structure of the analyse program

File Function # Lines
anayse.h Header file for analyse.cpp 45
main.cpp Program control 73
analyse.cpp Functions for reconstructing the MCMC chain 411

based on an encoded file.

Tables 4-6 show the structure of the omegaMap program. In total there are 6,785 lines
of novel code (Tables 4 and 5). omegaMap uses some functions in the PAML package
(Table 6), written by Ziheng Yang. PAML (Phylogenetic Analysis by Maximum
Likelihood) is freely available from http://abacus.gene.ucl.ac.uk/software/paml.html.
In addition, many functions in the C++ standard template library are used, so the total
size of the code is unknown. omegaMap can output the results in two formats. The
first is a tab-delimited text file with a column for each parameter in the model and a
number of other diagnostics such as the acceptance probability and computational
time. The thinning interval dictates the number of iterations before the parameter state
is output. This text file can be read by software such as R or Excel. However,
outputting the entire MCMC chain using a thinning interval of one creates an
enormous text file with a great dea of redundancy because only a subset of the
parameters are changed in any iteration. Therefore omegaMap can output in a second
format, an encoded version of the MCMC chain. The program analyse (Table 7) can
read thisfile, reconstruct the MCMC chain internally (orders of magnitude faster than
the original MCMC chain was generated) and output a text file for use with R or

Excdl.
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4.4 Simulation study

To investigate the performance of the method, | undertook two simulation studies. In
one data was simulated with variation in the selection parameter along the sequence,
and a constant recombination rate. In the other, data was simulated with variation in
the recombination rate along the sequence, and a constant selection parameter. Each
study consisted of simulating 100 datasets of n=20 sequences each of length
L =200 codons using the coal escent with recombination (Hudson 1983, Griffiths and
Marjoram 1997) and the NY 98 mutation model. Every simulated dataset was analysed
twice, using 250,000 iterations of the MCMC and a burn-in of 20,000 iterations.
Initial values were chosen randomly from the priors independently for the two runs.
The runs were compared for convergence and merged to obtain the posterior

distributions.

4.4.1 Permutation test for recombination

Before the datasets were analysed, each was subjected to a permutation test for
recombination (McVean et al. 2001; Meunier and Eyre-Walker 2001). Phylogenetic
anaysis is inappropriate for gene sequences taken from populations that are
demonstrably recombinogenic. The aim of the permutation tests was to demonstrate

the recombinogenic nature of the data.

The permutation test is a goodness-of-fit test for the model of no recombination.
When there is no recombination, there ought to be no correlation between physical
distance and LD, so sites are exchangeable. It should be noted that sites are also

exchangeable in the case of complete linkage equilibrium. If LD tails off with
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physical distance then recombination must have occurred in the ancestral history of
the sequences. The test proceeds as follows
1. The observed correlation between a measure of LD and physical distance is

recorded as C,.

2. The nucleotide positions are reordered at random and the correlation between
LD and physical distance is calculated.
3. Step 2 isrepeated 999 times.
Three measures of LD can be used: r?(Hill and Robertson 1968), D' (Lewontin
1964) and the four-gamete test (G4; Hudson and Kaplan 1985). In section 2.3.2
cor(r?,d), where d is physical distance, was used for testing the goodness-of-fit of the

standard neutral coalescent. If ¢, liesin thetail of the reference distribution then the

model of exchangeability of sites is not a good fit to the data, and we can conclude
that there is good evidence for recombination in the data. The probability of obtaining
aresult as extreme as observed under the model can be expressed as a p value, where
p is estimated to be

_n+1l
N+1

(Sokal and Rohlf 1995). Here n is the number times a value more extreme than ¢

was observed out of atotal of N simulations.

Using p values to rglect a “null” model might seem to be a particularly frequentist
thing to do. In fact a frequentist p value and a Bayesian posterior predictive p value
(Rubin 1984) are equivalent in the model of exchangeability described here, because
the model has no parameters. | will discuss the use of posterior predictive p values for

goodness-of -fit testing more in chapter 5.
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4.4.2 Simulation study A

This study was designed to simulate data with variation in @ but not in p. | varied @
between 0.1 and 10, as shown by the red line in Figure 5a. | created more fine detail
in variation in w for @ > 1 because, biologically, a scenario in which there is an
excess of non-synonymous relative to synonymous polymorphism is of greater
interest. For the same reason w is plotted on a natural, rather than alogarithmic scale.

The mutation parameters were set at ¢ = 0.7 and « = 3.0, which gives 8, =0.1. The
recombination rate was set constant at o = 0.1, giving atotal recombination distance
for the region of R= Z p =19.9. The mutation and recombination parameters were

chosen to mimic those estimated for the housekeeping genes of Neisseria meningitidis
(see Chapter 1). Exponentia distributions were used for the priors on u, x, @ and p,

with means 0.7, 3.0, 1.0 and 0.1.

Permutation tests showed that phylogenetic analysis of these datasets was
inappropriate because of the presence of recombination. The number of datasets for

which the p-vaue was less than 0.05 was 99, 93 and 93 for the three measures of LD

(r?, D' and G4) respectively.
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Figure 5 Results of simulation study A. (a) Average posterior of w, (b) coverage of w and (c) average
posterior of p. In (a) and (c) the red line indicates the truth, the black line indicates the average mean
of the posterior and the green lines indicate the average 95% HPD interval of the posterior. The
averages are taken over 100 simulated datasets. In (b) coverage is defined as the proportion of the 100

datasets for which the 95% HPD interval encloses the truth.

Figure 5a shows the average over the 100 simulated datasets of the mean and 95%
highest posterior density (HPD) interval for the posterior distribution of w at each site.
The average mean posterior density follows the truth closely. Likewise the average
95% HPD interval generaly encloses the true value of w. As expected, the effect of

fitting a prior with mean 1 was to cause the posterior to underestimate w when « >1
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Table 8 Summary of posteriorsfor simulation study A

Prior Average posterior

Parameter Truth Mean Lower 95% HPD Mean Upper 95% HPD Coverage

H 0.7 0.7 0.7 0.9 11 0.63
K 3.0 3.0 2.3 31 3.9 0.91
R 19.9 199 224 33.3 44.7 0.43

and overestimate w when « <1. The effect is not great except for the most extreme

valueswhere & =10.

However, even where the average 95% HPD interval encloses the truth, that does not
mean the 95% HPD interval encloses the truth for all simulated datasets. Figure 5b
shows the relevant quantity, the coverage of w, for each site. Coverage is defined here
as the proportion of datasets for which the 95% HPD interval encloses the truth. Half
of sites have coverage better than 93%, and 95% of sites have coverage better than
66%. If a false positive is defined as the lower bound of the 95% HPD interval
exceeding 1 when in truth « <1, then the false positive rate was 0.5%. The estimate
of the synonymous transversion rate u exhibits upward bias (average 0.90), with 63%
coverage (Table 8), and the transition-transversion ratio « is estimated to be 3.1 on

average, with 91% coverage.

Consistent with the findings of Li and Stephens (2003), | observed that the
recombination rate estimator has a small upward bias (Figure 5¢). The average mean
posterior is aimost flat, and the average 95% confidence intervals enclose the truth

completely, suggesting that the estimator is good notwithstanding its bias. The
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Table9 M CM C Moves Acceptance Probabilities

Mean acceptance

Type Move
probability a
A Change u 0.139
A Changex 0.157
A Change w within a block 0.573
A Change p within ablock 0.727
B Extend an w block 5’ or 3’ 0.403
B Extend an p block 5’ or 3’ 0.825
C Split an w block 0.381
D Merge w blocks 0.242
C Split ap block 0.635
D Merge p blocks 0.660

coverage is amost constant across sites at 95%. Table 8 shows that the estimate of the
total recombination distance, R, is aso upwardly biased. Coverage of R, however, was
only 43%, suggesting that the good coverage for p at individual sites may be in part
because of poor information. Importantly, Figures 5a and 5b show that the effect of
the selection parameter on the estimate of p is negligible, indicating that inference on

p isnot confounded by .

4.4.3 Mixing propertiesof reversiblejump moves

Achieving satisfactory acceptance probabilities can be an issue in reversible-jump

MCMC (Green 1995). This was not found to be a problem in the MCMC scheme
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presented here. For illustrative purposes, Table 9 shows the acceptance probabilities
for the MCMC moves, averaged over a pair of independent analyses of the same
dataset from simulation study A. The reversible-jump moves (those of type C or D)
had high acceptance probabilities (for example, a = 0.381 when splitting an o block
and a = 0.242 when merging w blocks). Of the other moves, acceptance probabilities
ranged from 0.139 to 0.825. The lowest acceptance probabilities were for moves
changing x and x (a = 0.139 and 0.157 respectively), perhaps because these changes
affect al sites in the sequence unlike any other move. Changes to moves involving p
had high acceptance probabilities (o = 0.635 to 0.825), which may be indicative of the

low information regarding variation in recombination rate within the region.

221



(=0 ;
T T T T T T T T T T T
0 50 100 160 200 0 £0000 100000 150000 200000 250000
Codon position lteration
b d
o
R o o
JoE °
oy
w | S o
m® % o
2
w
2 - S
< |
T \ T \ T \ e T \ 1
0 50000 100000 150000 200000 250000 10 15 20

lteration w

Figure 6 a Convergence of the mean and upper and lower 95% HPD bounds of the posterior on e for two
analyses (red and green lines) of the same dataset from simulation study A. b Trace of B, for one of the
two analyses. ¢ Trace of B, for one of the analyses. d Convergence of the posterior distribution of B, for

the two analyses (red and green histograms).

In Figure 6 the mixing properties of the two chains for the same dataset are shown.
Figure 6a shows the convergence of the two chains for the posterior distribution on w
across sites. The mean and upper and lower 95% HPD bounds are indicated. One
chain is plotted in red, the other in green. The agreement is good; more so for the
mean than the 95% HPD bounds. One would expect estimates of the latter to have
greater variance. Figure 6b is a trace of B, through iterations of one of the Markov
chains, and 6c is the corresponding trace of B,. B, and B, can only be changed by
reversible-jump moves. There is no evidence of poor mixing in either of the traces.

Figure 6d shows a histogram of the posterior distribution of B, for both the chains
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(one in red, the other green). The two appear to converge well throughout the
distribution. When the chains are merged the variance in the estimate of the posterior
will be reduced. However, if this were an analysis of areal dataset of specia interest,
rather than one of a hundred ssimulated datasets, then there is some argument for

running the two chains longer to further improve convergence.

4.4.4 Simulation study B

This study was designed to simulate data with variation in p but not in w. Along the
sequence p was allowed to vary at 0.005, 0.1, 0.5 and 1, for which one would expect
0.018, 0.35, 1.8 and 3.5 recombination events respectively per site in the ancestral
history under a coalescent model (Griffiths and Marjoram 1997). The tota

recombination distancewas R=37.5.1let £ =3.6 and k =3.0 giving 65 =0.5, and

a constant selection parameter of « =0.2. Exponential distributions were used for the

priorson u, x, @ and p, with means 3.6, 3.0, 1.0 and 0.2.

Permutation tests showed that these datasets were not amenable to phylogenetic

analysis because of the presence of recombination. All 100 datasets yielded p-values

less than 0.05 for all three measures of LD.
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Figure 7 Results of simulation study B. (a) Average posterior of p, (b) coverage of p and (c) average
posterior of w. In (@) and (c) the red line indicates the truth, the black line indicates the average mean
of the posterior and the green lines indicate the average 95% HPD interval of the posterior. The
averages are taken over 100 simulated datasets. In (b) coverage is defined as the proportion of the 100

datasets for which the 95% HPD interval encloses the truth.

Variation in the recombination rate was detected by the new method, as seen in Figure
7a. The average over the 100 datasets shows that the mean and 95% HPD interval for
the posterior distribution of p at each site pick up the rate variation, but not to the full
extent. As a result, the coverage shown in Figure 7b is generally good, on average
85%, but performs worst for the most extreme peak in rate between sites 41 and 55,

where it consistently underestimates the height. The properties of the estimate of the
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Table 10 Summary of posteriorsfor ssmulation study B

Prior Average posterior

Parameter Truth Mean Lower 95% HPD Mean Upper 95% HPD Coverage

H 3.6 3.6 3.4 4.2 5.1 0.53
K 3.0 3.0 2.5 31 3.8 0.95
R 37.5 39.8 374 50.9 65.0 0.49

total recombination distance R (Table 10) are similar to those in simulation study A.
There is a tendency to overestimate (average 50.9) and as a result coverage is 49%.
This bias could be corrected empirically, asin Li and Stephens (2003). Nevertheless,
there is power to detect rate variation on such fine scales. The extent to which the
posteriors underestimate the deviations from the mean recombination rate reflects the

constraining effect of the prior when the signal in the datais weak.

Figure 7c shows that on average the estimates of w are very close to the truth, with the
average 95% HPD intervals completely enclosing the true value. Along the sequence,
the estimates are flat, with mean 0.21 and coverage 90%. The false positive rate was
zero. Reflecting ssimulation study A, there was no evidence that variation in the
recombination rate confounded inference on the selection parameter. Table 10 shows
that there was some upward bias in the mean estimate of ¢ = 4.1, with 58% coverage,
and the transition-transversion ratio was estimated to be 3.2 on average, with 89%
coverage. Most importantly, both simulation studies show that when there is variation
in w or p it can be detected, when there is no variation none is detected, and there is

little or no confounding between @ and p.
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4.5 Summary

In this chapter | have described a new model for detecting immune selection in
nucleotide sequences, based on an approximation to the coalescent. The model uses
the NY98 codon model of molecular evolution which incorporates the ratio of non-
synonymous to synonymous substitution, dN/dS. Values of dN/dS less than one are
interpreted as purifying selection imposed by functional constraint and values greater
than one are interpreted as diversifying selection imposed by interaction with the host
immune system. Those sites under strong diversifying selection are predicted to be the
major determinants of immunogenicity for the gene product. In order to exploit
information about the underlying tree structure and mode of selection at sites
segregating for insertions/deletions, | have described a simple extension to the NY 98
mutation model. | have proposed a model for the variation in the dN/dS ratio and
recombination rate along a sequence and a reversiblejump MCMC scheme for
exploring that variation. The primary am of the Bayesian inference framework
described is to obtain a posterior distribution for the dN/dS ratio and recombination
rate for every site aong the sequence, but the underlying mutation rate,
transition:transversion ratio and rate of insertion/deletion are also estimated. Finaly |
performed simulation studies to assess the performance of the inference method for
two caricatures of variation in the dN/dS ratio and recombination rate. The method
was found to have good coverage for the dN/dS ratio, but some upward bias in
estimates of the recombination rate, in agreement with previous work. Most
importantly, the simulation studies showed that when there is variation in the dN/dS

ratio or recombination rate it can be detected, when there is no variation none is
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detected, and there is little or no confounding between dN/dS and the recombination

rate.

In the next chapter | will apply the new method to the porB locus of N. meningitidis,
which encodes the antigenic PorB outer membrane protein. | will give a brief
background to porB and the results of previous phylogenetic estimates of variation in
the dN/dS ratio at the locus. In order to verify the conclusions of the porB analysis
with the new method, | will apply a variety of model criticism techniques including
prior sensitivity analysis and goodness-of-fit testing. Goodness-of-fit testing requires
datasets to be simulated under the new model, so | will describe how to do that. I will
briefly investigate the effect of violating the coalescent assumption of random
sampling by comparing datasets of porB that represent a random and non-random
sample. Findly, | will compare the results of the new method to previous
phylogenetic methods to look for evidence of false positives caused by the assumption

of no recombination.
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